So-net無料ブログ作成
検索選択

KATO ED70入線 [模型]

2017年5月21日の日記

kato ED70-2.jpg KATOのED70です[晴れ][晴れ]

まさか,こんな日が来るとは思ってもみませんでした。

昨年の秋,KATOのホームページにED70の生産予告が出ていました。

北陸在住のiruchanはとてもED70が好きなので,以前,マイクロエースのものを買っていますけど,まさか,そのときにはKATOから将来,出るとは思いもしませんでした。とてもマイナーな機関車ですしね。北陸でしか走っていませんでしたし,わずかに19両製造されただけですから。

北陸本線の田村~敦賀間の電化完成は1957年10月1日ですが,先に田村~木ノ本間が完成し,そこで訓練運転する目的があったため,実車はひと足早く,1957年6月に試運転を開始することとなっていました。設計開始は前年の5月で,1年という期間しかなく,かなりの機器は仙山線で実験していた,ED45 1の機器と共通です。設計期間も短かったし,信頼性の低い水銀整流器を使っていたので,実際の運用は苦労があったと思いますが,交流機関車のパイオニアとして,大変貴重な機関車だと思います。

さて,KATOのED70が発売されたのは今年2月23日です。同時に買う予定だったトラ90000が発売延期で,送ってきたのは先月末です。

本当に待ち遠しい機関車でした。KATOらしく,非常に精密にしっかりとした出来ですし,動力の性能も素晴らしいです。

今日は,さっそく整備します。

まずはいつもどおり,スナバ回路の装備です。

PWM式などのパルス式コントローラを使って,機関車が停車していても前照灯を点灯させた状態で停車する,いわゆる常点灯に対応させるための工事で,iruchanが考案したスナバ回路を装着して反対側の前照灯が点灯しないようにします。

別にスナバ回路がなくても常点灯には対応するのですが,これがないと反対側の前照灯が点灯しちゃいます。

と言う次第で,とりあえずボディをばらします。

kato ED70内部.jpg ボディ内部です。

乗務員室あたりの窓ガラス部品にツメがありますので,これをうまく外してボディを外します。

kato ED70 基板.jpg スナバ回路の挿入状態です。

左側のLEDのすぐ右にコンデンサがありますので,これを撤去します。こうするだけで常点灯に対応しますが,これだけだと右側のLEDも点灯しちゃうので,スナバ回路を挿入します。

表面実装の部品なので非常にはんだづけがやりにくいですが,フラックスを塗ってはんだづけするとうまくいきます。むしろ,フラックスを塗るので,普通の電子工作で使う,ヤニ入りハンダじゃないほうがうまくいくかもしれません。

コンデンサや抵抗は最近は非常に小さくなり,▲のように途中を電線で結ばないといけません。絶縁した方がよいので,ロジックICの配線などに用いられるラッピングワイヤを使っています。

kato ED70&PFM.jpg 最新鋭のPFMコントローラでテスト中。

最近,試作したばかりのPFM式コントローラを使ってテスト中です。これは非常に高性能で,きわめてゆっくり起動しますし,▲の写真のようにつまみを一番左に回して絞った状態で常点灯という状態になります。通常のPWM式だと,前照灯は点灯するけど,機関車は動かない,という微妙な位置につまみを止めておく必要がありますが,PFM式は非常に常点灯の範囲が広く,単にボリウムを一番絞っておくだけで常点灯にできます!!

右側の前照灯が点灯しないのはスナバ回路のせいです。これがないと右側も点灯しちゃいます。

kato ED70 特高圧配線オリジナル.jpg オリジナルの状態

knuckle coupler.jpg ナックルカプラーへの交換

KATOのナックルカプラーに交換するのは非常に面倒で,なかなか排障器が外れないし,外れたと思ったら金属の板バネがどっか行っちゃったりして大変ですが,このようにボディを外しちゃったらついでにカプラーセットごと外してからやると簡単です。

ナンバーはマイクロエースのが2号と14号なので,7号機にしました。

さて,ここまで来たら試運転,と行きたいのですが......。

どうしても気になるところがあるんです。

特高圧配線の一部が金属線じゃなく,プラの一体成形ものになっています。

kato ED70 特高圧配線オリジナル1.jpg オリジナルの状況

    空気遮断器(ABB)と特高圧引込み碍子周辺がプラです。

以前,KATOのEF81でこうなっていて,どうしても気になって金属線に交換していますが,今回も交換しました。最近のEF70では全部,金属線になっていましたので残念ですがコストの問題もあるのでしょう。

まずは寸法を調べておきます。といって,ノギスでいきなり調べてもうまくいかないので,スキャナで部品を読み込んで,"花子" で採寸します。

もちろん,写っているスケールは"花子" での採寸用の基準寸法となります。"花子" で,スケールを任意の縮尺にして,このスケールの20mmが画面上で20mmとなるように設定すれば,寸法が原寸で表示できます。

ED70特高圧配線図面.jpg 図面作成中。

KATOのED70の高圧配線の金属線はφ0.4mmのようでしたが,この特高圧碍子に穴を開けないといけないので,一回り細く,φ0.3mmの洋白線を使いました。

ED70特高圧配線固定中.jpg ただいま固定中。


kato ED70 特高圧配線洋白線化.jpg 取り付けるとこんな感じです


kato ED70.jpg  とても美しいフォルムです。

こういう具合にうまく配線の改良もできました。

色合いも非常によく,実車の雰囲気をうまくとらえています。スムーズで静かな動力に感激しました。本当にどうもKATOさん,ありがとうございました。これから先日,入線したばかりのEF70 1000番台と一緒に試運転をしませう。


コアレスモータ対応鉄道模型用コントローラの開発~その9・PFM式~ [模型]

2017年5月20日の日記

先週,PFM式の鉄道模型コントローラを試運転しました。

残念ながら,かすかですが音がして,かなり甲高い音を出しますし,当然ですが,つまみを回していくとどんどん周波数が高くなります。チョッパ電車なら一定の音なのでそれほど気になりませんが,初期のインバータ電車みたいに音の周波数が変わるので非常に感じが悪いです。まぁ,機関車が走り出すと気にならないレベルですけど。

すっかり泥沼にはまってしまいました。これじゃ,ウクライナの湿地帯にはまってしまって身動きが取れなくなったドイツ軍,という感じです......orz。

しかたないので,なんとか冬将軍が来る前に無事撤退,という具合に行きたいものです。

先週は,スタート時点のスイッチング周波数を500Hzと想定して設計しました。やはりこれはダメで,もっと高い周波数にしておかないと耳に聞こえてします。

ただ,そうしなかったのは,先週も書いておきましたが,PFM式は当然,周波数がどんどん変わるので,最終的にはかなり高い周波数になってしまいます。実際,先週の測定では610Hz~63kHzというものでした。つまり,大体100倍くらいの周波数になります。

こうなってくると,仮に20kHzでスタートすると最終的に2MHzにもなることが予想されます。

そうなると使用しているタイマIC555の発振可能周波数がいくらまでか,と言うのが問題になります。

555の発振可能周波数は大体,500kHzというのが相場です。iruchanもそう思っていました。

でも,テキサスインスツルメンツが出しているNE555の規格表を見ると,もっと上まで出そうです。

NE555 free running frequency.jpg TI社NE555データシートから

たしかに,100kHzまでしか表示されていませんが,RA+2RB=1kΩの線を伸ばすと1MHz以上は出そうです。

ということで,C,Rをまた変更してテストしてみることにします。

まずはSpiceでのシミュレーションから。LTspiceは幸いなことに,NE555のモデルが標準でついています。

PFM controller (20kHz) simulation schematic.jpgシミュレーション回路

PFM controller (20kHz) waveform.jpg スタート時点の最低デューティ。

最低デューティは約1%で,周波数もほぼ20kHzとなっています。

PFM controller (20kHz) waveform-2.jpg 最終段階です。

最終的にはデューティ100%となる直前の状態です。初段の非安定マルチの出力は1.6MHzで,波形も崩れてきていますが,まだちゃんと出力しています。

ということで何とかなりそう.....,という雰囲気です。

それに,波形が崩れてきていますが,そもそもデューティが90%以上になっている段階でのことなので,ここで波形が崩れても,単にデューティが90何%かから100%に飛ぶだけのことで,問題ありませんね。

PWM式の場合,波形が崩れるのは第4回にも書いておきましたとおり,デューティが低いときです。

ここで波形が崩れてしまうと,低いデューティのパルスが出てこなくなり,ラピッドスタートになっちゃうので大問題ですが,PFM式は低デューティは大得意ですから,問題ありません。

ということで,ここまで来たら基板上の部品を取り替えてテストしてみます。

今回,555の発振周波数を決めるCとRのほか,2段目の単安定マルチの555の充放電コンデンサの放電用の2SA1015を1ランク上の2SA1020に取り替えました。Spiceのシミュレーションで120mAくらい流れることがわかったためです。

PFMコントローラ2.jpg 一応,現時点での回路図です。

基板(20kHz).jpg 最終的な基板です。

最低デューティ(10kHz).jpg 出力波形です。

▲のオシロの波形は最低デューティの時です。残念ながら周波数は11.5kHzと予想より低めですし,最低デューティも6.6%になっています。さんざん原因を考えたのですがよくわかりません。初段に使っている555のコンデンサが150pFと異常に小さいですし,セラミックコンデンサなので誤差も大きいからか,と考えていますがよくわかりません。まあ,これで動かなければOKなので,とりあえずテストしてみます。

最大デューティ(改良後)1.jpg ちなみに,最大デューティ時です。

試運転.jpg ただいまテスト中。

やはり驚き.......。

     [晴れ][晴れ] ものすごくスローで動くんです [晴れ][晴れ]

もちろん,常点灯にも対応し,停止した状態で前照灯が明るく点きます。6%くらいのデューティだと機関車は動き出しちゃうんですが,動かずに停止しています。ちょっとなんでだか説明できないんですけど。

それに,PFM式のよいところは最低デューティでも必ずパルスが出ているので,ボリウムを一杯に絞っても必ず前照灯が点灯します。

これはいいことなのか,悪いことなのか,どちらにも解釈できちゃうんですが,いい方としては,いちいち,今回作ったKC-1改PIC式のもののように,調光用のボリウムを調節しなくても前照灯が点灯するし,また,TL494を使った従来のPWM式のようにつまみが1個しかないタイプのものは機関車は動かないけど,前照灯は点灯する,という位置につまみを止めておかないといけませんが,コアレスモータ機はLEDが点灯するデューティと機関車が動き出すデューティの範囲が狭く,そういう状態で止めておくのはなかなか厳しいですが,今回のPFM式だと楽勝でした。それも単につまみを一番絞っておくだけでOK,というのは楽です。

まあ,逆に,前照灯を消したいときはコントローラをoffするしかない,と言う欠点もあるのですが.....。

また,前回,テストしたときに気づいたのと同様,PFM式は非常にスローで動きます。これはKC-1も真っ青と言っていいくらいです。なにより,さっきも書きましたとおり,常点灯する範囲が非常に広く,時計で言うと10時くらいまでは前照灯のみが点灯して,それ以後は機関車がゆっくり動き出す,という感じで,非常に鉄道模型のコントローラとして優秀だと思います。PWM式の場合,今回製作したものも含め,常点灯する範囲というのは非常に狭く,特に,コアレス機は厳しいのですが,今回,製作した一連のものでも常点灯の状態を保つのは非常にクリティカルなのに,PFM式は本当に楽勝,という感じです。

常点灯(20kHz).jpg もちろん,停車中です。

マニアの皆さんを機関区に集めて撮影会するにも楽で,これだと皆さんに喜んでいただけますね......(^^)。

と言う次第で,PFM式は大いに将来有望で,今後,研究していきたいと思います。

ソ連に侵攻したドイツ軍は1815年のナポレオン軍同様,冬将軍に負けちゃうわけですが,こうして無事にiruchanは泥沼から脱出し,キスカ奇跡の撤退ができました。


2017年5月23日追記

どうもパルスが太く,デューティが高めなのは使用している,HA17555の応答速度がやはり低いためのようです。実際,実機(最後の回路図をご参照ください)ではSpiceのシミュレーションとはかなり違うCとRの値になってしまっています。

と言う次第で,もし,本機を製作しよう,と言う方はより高速なC-MOSタイプの555をおすすめします。ナショセミのLMC555だと3MHzまで動作保証されていますので,特に2段目の単安定マルチにはこれを使った方がよいと思います。また,LMC555は最大電圧が15Vまでですので,そのまま差し替えができます。


2017年5月29日追記

プリント基板図のご要望がありましたので,upしておきます。まだiruchanはPFMコントローラは未完成と考えていますので,とりあえずの暫定版とお考えいただければ幸いです。

実験しましたが,やはり2段目の555はC-MOSタイプのLMC555をお使いください。最低パルス幅は0.8μsで,最低デューティは1.4%となりました。2段目の単安定マルチバイブレータはより高速タイプのものが必要なようです。

ただ,残念ながら,初段の非安定マルチにLMC555を使用すると動作しませんでした。こちらは通常のTTLタイプの555をお使いください。

PFM controller(基板)1.jpg プリント基板(銅箔面)

PFM controller PCB(部品面)1.jpg プリント基板(部品面)

サイズは53×37mmです。 はジャンパ線です。


コアレスモータ対応鉄道模型用コントローラの開発~その8・PFM式~  [模型]

2017年5月15日の日記

先週,コアレスモータ車両にはPFM方式がよいのではないかと考え,基板を作ってテストしてみました。

ところが,大チョンボをしてしまい,ドツボにはまってしまいました.......[雨]

一杯にボリウムを絞ってもLEDが点灯するのはいいのですが,1秒ごとにパッ,パッと点滅する有様で,常点灯とは言えますが,これじゃお客さんから苦情が来るってば!!

ちゃんと停車中もずっと灯りが点滅せずに点いてなきゃいけませんね......orz。

PFMは低デューティのパルスを出力するのに優れた方法で,最近はスイッチング電源が負荷が小さいときに従来のPWMより損失が少ないので用いられています。KATOのKC-1はスイッチング電源用のNECのμPC494Cを使っていますが,これは古いICなのでPWMのみですが,最近のものは負荷に応じてPFM⇔PWMのモード切替をするものが増えてきています。

鉄道模型用のコントローラとしては,PFMは安定して低デューティのパルスを作れる,と言うメリットがあると思います。

それに対し,iruchanも昔から作っているPWM式はあまり低いデューティのパルスを出力できません。

というのはPWM式はパルスの幅,言い換えるとon時間を可変するため,パルス幅が狭くなってくるとスイッチングする素子の速度が問題になってくるためで,特に,鉄道模型だとスイッチングによる電磁音が聞こえないよう,20kHz以上のパルスを出力しますが,それで低デューティとなるとパルスの幅が狭くなって余計にスピードが問題になり,パルスが出力できなくなってしまうからです。

一方,コアレスモータは起動時のトルクが大きく,また,機械的抵抗が小さいため,非常に低いデューティで回転してしまいます。

iruchanが実測したところ,最低で4%くらいのデューティで起動してしまうようです。

常点灯に対応させるためには,さらにこのデューティより小さいパルスを出力させないと,前照灯,室内灯のLEDが点灯しないため,目標として1%のデューティが出力できるコントローラを開発しています。

ところが,仮にスイッチング周波数を20kHzとし,デューティ1%とすると,パルス幅はわずかに0.5μsとなります。

第3回に書きましたが,これだとバイポーラTrはダメで,MOS-FETじゃないと出力できません。

じゃ,MOS-FETでいいじゃん,と思っちゃいますが,今度はゲートの入力容量が問題となり,その容量の充放電を速くするため,ドライブ回路が必要となりました。

と言う次第で,結構,PWM式で高速コントローラを作る,というのは面倒なことになります。

一方でPFM式はと言うと....,

安定したパルスが出力できる周波数で一定幅のパルスを作り,off期間を可変してデューティを変化させるので,無限に0%に近いデューティのパルスを出力できます。PWMだと,on期間を可変するので,どうしてもパルスの最小幅には限界があり,あるところでパルスが出力されなくなってしまって最低デューティは数%となってしまいます。

そこで,前回,PFM式を試作してみたのですが,大チョンボをしてしまい,ボリウムを一杯に絞ったら前照灯&室内灯が点滅してしまう,という不具合を生じてしまいました。

off期間を無限に延ばせばデューティを限りなく0にできる,と思ったのは間違いで,確かにそうだけれど,鉄道模型の常点灯に応用する場合はoff期間には自ずと限度があるのです。

こんなの,ちょっと考えりゃ,気がつくんですけど,iruchanは基板をテストして基板上に取り付けたLEDが点滅していても気がつきませんでした.....orz。

そこで,今回はまず,off期間が最大どこまで延ばせるか検討してみます。

PWMもPFMも同じで,どちらも常にLEDは点滅しているので,要は人間の目に点滅しているとは気がつかないくらいまでは伸ばせるわけです。

とりあえず,500回と決めました。実際,目に感じられる回数としては映画が24回,TVが30回ですから,これくらいで十分な気がしますが,あまり低いスイッチング周波数は損失も増えるので,高めにしました。

となると,toffは最大でも1/500sec.で,2msec.と求められます。デューティはton/(ton+toff)ですから,1%のデューティのパルスを生じさせるためには,tonはさらに1/100で,約20μsです。

PFM controller duty settings.jpgデューティの決定

これならなんとかバイポーラTrでも十分出力可能です。前回,出力に東芝のダーリントンTr2SD686を起用したので,できればこれをそのまま使いたいのですが,何とかなりそうです。

前回も書きましたとおり,回路は非安定マルチバイブレータでトリガ信号を作り,それをもとにして単安定マルチバイブレータで一定幅のパルスを作らせようとしていますので,前段の非安定マルチは500Hz,次段の単安定マルチは1/20μsで50kHzで動作させればよいのです。

タイマIC555の規格表には上記の周波数で発振させる場合のC,Rの計算式が載っていますので,それに基づいて再計算しました。iruchanはいつも新日本無線(JRC)のNJM555の規格表を見ています。ご参照ください。

といって,今回使用したのは部品箱から出てきた日立のHA17555なんですけど.......(^^;)。

日本ではJRCのほか,NEC,東芝,日立など主だった半導体メーカが555を作っていました。今でも世界中で大量に作られていますが,DIPタイプを生産してくれているのはもう日本ではJRCさんだけのようです。HA17555もルネサスのwebを見たら新規採用非推奨となっています。

なお,555を2個内蔵した,556と言うICもあります(スプレー式の潤滑油じゃありませんけど。もちろん,豚まんじゃないってば。ちなみに551というICはありません)。これを使うとICは1個で済みますが,あまり556は見かけたことがありません。もちろん,556をご使用になってもOKです。

以上の計算からC,R類の定数を変更して,検証のため,LTspiceでシミュレーションをしました。

PFMコントローラsimulation schematic.jpgシミュレーション回路です。

PFM simulation 波形(16.5us).jpg 最低デューティの状態です。

━ が初段の非安定マルチの出力で,その立ち下がりに同期して2個目の単安定マルチが出力します( 線)。ただ,どうしても2個目の単安定マルチのパルス幅が広く,最低デューティが大きくなってしまったので,1個目の非安定マルチの出力を利用して2個目の555の充電用コンデンサ0.1μFを放電させています。実は2SA1015は結構,重要な役割を果たしているのです。

PFM simulation 波形(16.5us)2.jpg 途中の状態です。

徐々にパルスの数が増えていき,パルスの間隔が狭くなっていきます。最後は100%となって,完全な直流となります。

PFM simulation 波形(16.5us)3.jpg 拡大

パルスの周波数としては,最低が610Hzで,最高がなんと63kHzにもなります。ただ,最高の状態でもパルスはきれいな方形波を保っており,PFM式としては成功のようです。555はなかなか優秀なICですが,最高で500kHzくらい,と考えていたので,もう少しよいようです。


さて,これでうまくいくはずです。抵抗とコンデンサを取りかえてテストしてみます。

基板(改良後,最低デューティ).jpg なかなかいい具合です[晴れ]

▲の写真はボリウムを一番絞った状態ですが,モニター用の青色LEDは明るく光っていますし,肉眼で見て点滅しているとは全く見えないのでOKです。もっとも,初段の555の発振出力でパイロット用のピンクのLEDよりは暗いので,やはり停車中は少し暗くなると思います。でも,最近のLEDは輝度が高いので,全開にしたらもうまぶしいくらいでした。これでも電流制限抵抗を10kΩにもしているんですけどね。昔だったら12Vの電圧をかけるんだったら電流制限抵抗はせいぜい1kΩでしたけどね.....。  

オシロで波形を確認してみます。

最低デューティ(改良後).jpg 最低デューティ。0.78%でした。

中間デューティ(改良後).jpg 途中の状態です。

  こうやって徐々にパルスが増えていきます。

PWMだと,パルスの数は一定で,徐々にパルスの幅が広くなっていくのが観測できますが,やはりPFMだとすこし状況が変わります。

最大デューティ(改良後).jpg 最大状態です。デューティ100%となります。

また,off期間中も2V前後の電圧が出ていて,ノーカットオフ回路がうまく動作していることがわかります。モータに使用すると,off期間中でもわずかに電流が流れていますので,騒音が小さくなると思います。

PWM式だと何も工夫せずに作っちゃうと最低デューティは数%だし,最高デューティもKATOのKC-1もそうですが,完全に100%とならないものが多いので,PFM式はどちらも容易に達成でき,いいシステムだと思います。


と言う次第で,試運転です。

しかし.......。

コントローラのつまみを回していくと,やはりピーッと言う音がします。しかも,機関車が動くまで,どんどん周波数が上がっていき,ピ~~~~~~ッという感じでどんどん音が甲高くなり,非常に感じが悪いです。

PWM式でもスイッチング周波数が低いと音が聞こえますし,実際,iruchanは300Hzでスイッチングできるようにして201系そっくりな音を出して喜んでいたりするんですけど(変態!!),PWM式では音の周波数は変わらず,いつも一定の周波数の音なので,それほど違和感はありません。ところが,こういう風にどんどん周波数が変わっていく,というのは非常に気持ち悪いです。

一応,ノーカットオフ回路を構成してあって,モータには常に電流が流れているので非常に音は小さいのですが,やはり近くで聞くと耳障りです。

と言う次第で,結局,今回もボツ。

やはり,スイッチング周波数は20kHzくらいから上になるようにしないとダメなようです......orz。


でも,かすかな希望が.....。

試運転して気がついたのですが,非常にスローで動きます。自作したKC-1改も非常にスローで動きましたけど,これもなかなかのもの。いや,それ以上という感じです。実際,測定してみると1cm/sくらいのスピードで動きます。KC-1改でも2.6cm/sでしたから,非常に優秀だと思います。

Nゲージに限らず,鉄道模型はスローで走ることが求められるわけですけど,このPFM式はその点,非常に優れているのではないかと考えています。

次回,周波数を向上して音の問題を解決したいと思います。


コアレスモータ対応鉄道模型用コントローラの開発~その7・PFM式~ [模型]

2017年5月8日の日記

GWを利用して基板を3枚作りました。そのうちのひとつをご紹介します。ただ,今日は失敗でした。それはまた後ほど。

このところ,KATOが蒸機のリニューアルに際して採用しているコアレスモータに対応したコントローラを作っています。

どうにもこのコアレスモータというのは何より小型で,世界的にも細くて小さな日本の蒸機のボイラーにも収まるし,また,性能面でも非常に低速でもスムーズに動くので大変な優れものです。

ただ,少々扱いにくい面があり,市販されているPWM式コントローラを使っても停車中に前照灯を点灯させておく,いわゆる常点灯に対応しないばかりか,少しラピッドスタート気味で,つまみを回していくと突然走り出す,という現象があるようです。

iruchanはずっと昔からコントローラは自作しているので,市販品で調べたことはないのですが,皆さん,ネットに書いておられるのを見ると市販のコントローラもこのような現象があるようです。

といってえらそうなことを書いていますけど,iruchanが自作したコントローラも全く同じ現象で,どうにも突然走り出す,という感じがします。

ということで,コアレスモータ対応のコントローラを開発するべく,このところ研究をしていました。

ラピッドスタートの原因についてはほぼ特定できました。

原因はPWM式コントローラが実は,非常に低いデューティ(パルス幅)の出力が苦手で,特に,PWM式は電車で言えば電機子チョッパ制御なのでどうしてもモータから音がしちゃうので,それが聞こえないよう,20kHz以上の周波数のパルスを出すように設計するのが普通ですが,こうすると低いデューティのパルスが出力できなくなります。

iruchanが従来,使っていたコントローラも最低デューティは5~8%くらいです。一方,第4回に書きましたが,コアレスモータ車の起動時のデューティは4~8%くらいでしたから,これじゃラピッドスタートするのは当たり前,という気がします。

そこで,これまでのところ,最低デューティを1%程度としたPWM式コントローラを作ってきました。これなら無事に常点灯にも対応しますし,機関車も超低速からスムーズに起動します。

ただ,通常,PWM式のコントローラはモータが音を出すため,人間の耳に聞こえないよう,20kHz以上の周波数でスイッチングするのが普通です。こうするとスイッチング損失が減り,教科書でもPWM制御をする場合には高周波が有利,と書いてあります。

コアレスモータの大手マクソンモータのwebにもそう書いてあり,周波数は39~60kHzなんて書いてあります。100kHz以上でスイッチングすることも多いようです。

ところが,20kHz以上の周波数でスイッチングすると,高速なMOS-FETを使っても1%のデューティのパルスを出力するのは困難であることがわかりました。そこで,前回までは出力のMOS-FETの前段にドライブ回路を挿入し,MOS-FETのスイッチング速度を向上させました。

あるいは,低いデューティのパルスを出力するにはスイッチング周波数を下げる,という方法も考えられ,やはり鉄道模型には低周波のPWMが有利です。仮にスイッチング周波数を300Hzとすると,1%のデューティのパルス幅は33μsですから,スイッチングの遅いバイポーラTrを使っても余裕で出力できます。

ところが,これには大きな問題があり,ひとつは騒音です。

モータが瞬間的に最大トルクと0を繰り返すため,モータが振動して音を出します。これは普通の電車も同じで,201系は300Hzでチョッピングしながら走行していましたから,プーッと言う音を出していましたし,インバータ電車は周波数可変ですから音の調子も変わりながら音を出していますね。

と言う次第で,iruchanはスイッチング周波数を300Hzにしたコントローラを作り,201系のチョッパ音を楽しんだりしているんですけどね.....。

一方,KATOのKC-1は前照灯&室内灯用に24kHzの高周波パルスを併用していて,機関車が動き出さない程度に高周波パルスを出しておくと停車中にも照明がつくようになっています。

この方法はもう一つ,大きなメリットがあり,低周波の大きなパルスの間に高周波の幅の狭いパルスが埋めることになり,モータにはフリーホイーリングDiを介してoffの期間中も循環電流が流れて騒音が出ません。

この辺は第2回で解析しましたので,ご興味がある方はご覧ください。

と言う次第で,今回は再び低周波PWMに取り組みたいと思います。

ただ,今回は単純な低周波PWMではなく,PFMにしたいと思います。

PFMってなんや? ってお思いの方も多いと思います。

PWMとの違いは,PWMはPulse Width Modulation の略で,パルス幅変調と訳されますが,周波数は一定で,パルスの幅,すなわちon時間を変化させるのに対し,PFMはPulse Frequency Modulation でパルス周波数変調の意味ですが,パルスの幅は一定で,off時間を変化させます。1秒あたりのパルスの数,つまり周波数が変わるのでPFMと呼ばれます。

PWM原理.jpg   PFM原理.jpg             

                  PWM                  PFM


詳しくは第1回に書いておりますのでご参考になさってください。

こうすると低デューティ時の効率が向上し,最近ではスイッチング電源の制御に用いられているようです。理由は効率にあり,スイッチング電源用のICもデューティが低いときは通常のPWMからPFMに制御を変更し,効率の向上を図ったものが増えてきています。

鉄道模型用としては,低いデューティが容易に得られる,と言うことでしょうか。off時間を無限に延ばせば,デューティは限りなく0に近づきますからね。PWMだと,素子のスイッチング速度の関係で,限りなく0に近づけることができません。あるところで突然0になります。もっとも,スイッチング周波数が300Hzとか,50Hzとか,低かったらほとんど問題ないんですけどね.....。

さて,と言う次第で,PFM式のコントローラを開発したいと思います。

PWMで言えば,スイッチング周波数300Hzにしよう,と思いました。201系と同じ周波数ですし,コアレスモータとの相性もよいようで,Tomixの5001PWM改造コントローラでも300Hzだとコアレス機がうまく動きましたので。

そこで,パルス幅は1/300sec.ということで3.3msec.とします。また,最低周波数は1秒とします。そのときのデューティは1%となるように設計します。でも,ここに落とし穴がありましたが,iruchanは基板を作るまで気がつきませんでした......orz。

PFMコントローラsimulation schematic.jpg

                PFMコントローラシミュレーション回路

最初,回路としてはPWM式の基本回路である,三角波発振回路とコンパレータを組み合わせたもので考えたのですが,どうしても低いデューティにならないし,また,よく考えてみると,発振周波数を変えると同時にパルス幅も変わっちゃうのであきらめました。

と言うことであきらめて基本に立ち返って,可変周波数のパルス発振回路でパルスの間隔を決め,それをトリガにして一定幅のパルスを発生させる回路の組み合わせ,と言うことにしました。具体的には,非安定マルチバイブレータと単安定マルチバイブレータの組み合わせ,と言うことになります。

非安定マルチと単安定マルチ,ということなので簡単にタイマIC555を使いました。PICを使う,と言うことも考えられるのですが,周波数が低いのでハードウェアPWMが使えず,ソフトウェアに頼るところが大きいのでやめました。

ただ,いつも思うんですけど,なんで電子工学の世界でバイブレータなんて言葉を使うんでしょうね~。それに,非安定とか単安定とか,双安定とかやたらたくさんバイブレータがあります。iruchanは普通にオシレータと言えばいいんじゃない,と思います。電子工学を学び始めたとき,なんてなんだと思いましたけど。覚えるのも大変なんですけどね.......(^^;)。


なお,詳しくはLTspiceでシミュレーションしながら設計しましたが,難しいのはこの回路でもやはり低デューティで,単純に555を2個組み合わせた回路ではダメでした。どうしても10%くらいから下のデューティにできません。

原因は2個目の単安定マルチのパルスが大きいことで,どうも発振の時間を決めるコンデンサC3をうまく放電できていないようです。

しかたないので,これを高速で放電させるべく,初段の555の出力を利用してPNP Tr Q3を使ってそのコンデンサを放電させることにしました。2SA1015がそれです。これがないと幅の狭いパルスが出せません。

ただ,これでいいかというと,低いデューティの時はPWMと同じでモータには循環電流が流れませんので,大きな騒音を出すと思います。

これじゃ意味ありませんね~。やはり高周波PWMか,KATOのKC-1みたいに低周波&高周波PWMの混合タイプにしないといけません。

と言うことでiruchanもPFM方式は一度,あきらめちゃったのですが......。

いいことを思いつきました[ひらめき]

出力の制御素子を完全にカットオフするのじゃなく,あらかじめアイドリング電流を流しておけばカットオフ寸前でしないようにできますね!。

これって,1970年代のノー・カットオフパワーアンプじゃない?

って思う人は相当な爺さんです(失礼)。iruchanももちろん,その一人です......(^^;)。

半導体アンプの最大の欠点はB級出力段によるスイッチングひずみでした。原因はプッシュプルになっている出力段が信号の正負に応じてカットオフするためで,これを回避するため,普通だったらA級アンプにすればいいのですけど,これじゃアンプがあっちっちになっちゃうし,出力もロクに取れないので,回路を工夫してB級のまま,上下のTrがカットオフしないようにしたのがノー・カットオフアンプでした。

iruchanも中学3年の時,苦労してA級アンプを作りましたけど,あまりに熱いので夏は大変でした。それに懲りて,いままでA級アンプは作ったことがありません.........(^^;)。

こういった欠点を改良したのがノー・カットオフアンプで,最初に開発したのはパイオニアじゃなかったか,と思いますが,ソニーやテクニクス,Lo-Dなど,ほとんどのメーカが新しい回路を考案して採用していました。当時,"無線と実験" とか,"ラジオ技術" によく解説が載っていましたし,NHK出版が出していた今はなき "電波科学" (懐かし~~)が熱心に解説記事や製作記事を載せていました。

iruchanは熱心にこういった記事を読んでいたので,今回,それを思い出して,PFM式コントローラに応用することにしました。

回路は簡単で,PFM用のパルスとは別に,出力の制御素子にバイアスを加えてカットオフしないようにしています。

定電流Diを使ってバイアス電圧を作ります。完成後,出力端子が0Vとならないように調整すれば,制御素子はカットオフせず,モータに常に少し電流が流れてモータ電流が途切れないようにして音が出ないようにします。実際,LTspiceでも確認できました。

PFMコントローラmin.デューティ時波形.jpg シミュレーション結果です。

パルスがoffとなっている期間に注目していただきたいのですが,普通のPWM式のコントローラの場合はここは電流,電圧ともに0ですが,本機は0.8Vくらいを出力させ,40mAくらいの電流をモータに流しています。こうすると音が小さくなる......はず.....です??? もちろん,こんな電圧ではモータは回転しませんし,LEDも順方向電圧以下なので,点灯しません。

▲の図は最低デューティの時を示していますが,最低デューティは約0.4%です。

第4回に書きましたけど,前照灯が点灯するのが約3%,コアレスモータが回転するのは最小で約4%くらいですから,十分低い値です。シミュレーションどおりだとうまく常点灯もできますし,非常にスムーズに機関車が起動するはずです。

PWM式だとほぼこれが限界のデューティとなりますが,PFM式だといくらでも小さくできます。しかし,あまり最低デューティを小さくすると,どこまでつまみを回してもなかなか起動しない,と言うことになりますので,これくらいが最低デューティとして適当ではないかと思います。実際には,模型を運転してみて,多少,変更しないといけないと思います。

最後に,出力はバイポーラTrを使うことにします。高周波PWMだと高速なMOS-FETの採用が必要ですが,今回は300HzなのでバイポーラTrで十分です。今じゃ,はるかに高性能なMOS-FETがたくさん出ていますので,MOS-FETでもいいんですけどね.......。
なお,バイポーラTrにする場合,hFEの大きなものが必要なのでダーリントンTrにしました。起用したのは東芝の2SD686です。NECの2SD560同様,鉄道模型のコントローラによく使われましたね。懐かし~~。
 
もちろん,まだこれらのTrは入手可能ですが,高いのでこういう古いTrを使う必要は全くありません。同じTO-220タイプの2SD1415A(東芝),2SD2014(サンケン)などでOKです。でも,iruchanは古い素子は大好きなんですよね~(^^;)。

さて,ここまで来たらプリント基板を作ってテストしてみます。

PFMコントローラ基板1.jpg 基板が完成しました。 

ピンクのLEDは最初の非安定マルチの出力のモニターです。これが点灯していれば,非安定マルチは動作していることがわかります。あとでこれはパイロットランプにしてしまう予定です。 

2つめのブルーのLEDは出力のモニタ用です。これを同じ基板に作っておくとテストの時に便利です。 

可変抵抗は左一杯に絞った状態でもパルスが1秒ごとに出て,ブルーのLEDが瞬間的に1秒に1回点灯します。その後,可変抵抗を回していくと徐々にパルスの間隔が狭まり,最終的に完全な直流となってLEDがずっと点灯したままになるとOKです。

PFM controller wave.jpg 出力波形です。 

オシロで観測すると,計画通り,1秒ごとにパルスが出て,最低デューティは0.7%でした。また,最大デューティは100%で,うまくいきました。また,パルスがoffの期間でも0.8V程度の電圧が出ていて,バイアス電流がうまく流れていることがわかります。

ところが.......。

ここまで来て,大変なことに気がつきました。

そもそもパルス幅を0.3msec.としてしまったので,1秒ごとに瞬間的にLEDが点灯するのが目で確認できちゃいます。

ってゆ~ことは......,

前照灯や室内灯が1秒ごとに瞬間的に点灯する.......わけです。

こんなおかしいことはありません。確かに,モータは起動しないので停車中にも点灯するわけですが,これじゃ,点滅しているだけで,お客様から "新聞が読めへんやないか!!" と苦情が来ることは必至です......orz。

考えてみれば当たり前なんですけど,iruchanはアホですね。できあがってみるまで気がつきませんでした。

と言う次第で,今回は失敗です。やはりスイッチング周波数を向上させて,再挑戦してみます。


続きはこちらで。


再び鳩時計の夜鳴きを止めた話 [電子工作]

2017年5月6日の日記
 
鳩時計1.jpg
 
2年前に家で使っている鳩時計が照度スイッチがないため,暗くなっても鳩が鳴くので照度スイッチを作って夜は自動的に止めるようにした,と言う記事を書きました。
 
ところが,せっかく作ったのに,電池の寿命が短く,せいぜいひと月くらいでスイッチが応答しなくなってしまいました。
 
原因はやはりCdSを使ったアナログ回路じゃ消費電流が大きく,電池の持ちが悪いのです。
 
と言う次第で,今回,PICを使った回路にしたいと思います。
 
PICは非常に消費電流が少なく,単4電池2本を使ったりすると半年以上,電池が持ちますので,こういう風にしたいと思います。
 
と言う次第で,前回同様,フォトMOSリレーを使って,鳩時計のモータ回路をon/offするような回路にしました。もともと,手動でon/offするスイッチがついているので,その接点を自動的にon/offするようにしたのです。
 
使ったPICはA/Dコンバータのついている12F1822です。
 
回路は次のようにしました。
 
光スイッチ回路3.jpg最初の回路です。これはボツ。
 
普通なら,フォトTrの電源は電池から直接取りますが,そうすると常時,フォトTrに電流が流れて電池がもったいないので,測定するときだけ,#2ピンに瞬間的(20ms)に電圧を出力することにします。その間にフォトTrNJL7502Lが動作するので,エミッタにつないだ抵抗に生じる電圧を測定します。こういう芸当はPICじゃなきゃできませんね。
 
測定した電圧がしきい値を超えていれば出力#5ピンのポートをonにして,フォトMOSリレーを動作させます。
 
また,照度センサは前回同様,応答速度は速くなくてもよいのでCdSでもよいのですが.....。
 
ただ,iruchanはちょっとフォトTrがCdSよりは応答速度が速いけど,フォトDiより遅いのであまり好きではありません。また,フォトTrは赤外線に反応するものばかりで,人間の目の特性に合っていない,と言うのもあまり好きじゃない理由です。ところが,この新日本無線のNJL7502Lはほぼ,人間の目にあった特性になっていて,しかも感度が高く,コレクタ電流も大きいのでとても使いやすいのです。
NJL7502L特性.jpgNJL7502Lの特性です。
NJL7502L感度特性.jpg 感度も高いです。
                    いずれも新日本無線のNJL7502L規格表から。
 
大体,100lxで回路が動作するように回路&ソフトを設計しました。
 
と言うことでプリント基板を作ってテストしてみました。
 
ところが......。
 
明るくなって,テスト用にPICにつないだLEDが消えても鳩時計のモータが動作しません[雨]
 
う~~ん,なんでかな,と改めて使っている東芝のフォトMOSリレーTLP222Aの規格表を見て気づきました。
 
トリガLED電流が3mA(最大)と書かれています。これは,つまり,入力側のLEDに最大で3mA流すと出力のMOS-FETがonしますよ,ということです。
 
と言う次第で,最大で3mAも流せば十分ですよ,と読めるのですが,じゃ,最低は何mAだよ? っと思っても書いていません。
 
最初,1mA程度流すようにしていたのですが,やはりこれじゃ全然,MOS-FETはonしないようです。
しかたなく,フォトMOSリレーの入力に入れていた抵抗を1kΩから470Ωにしたら鳩時計のモータが動作するようになりました。
 
電流を測ってみるとほぼ3mAで,結局,TLP222Aは3mAくらいは流さないとリレーとして動作しない,と言うことがわかりました。
 
残念ながらこれじゃ,電流大きすぎ。
 
単4電池は大体,900mAHくらいの容量なので,おおざっぱな計算ですけど,3mAも流すと300時間くらいですから,ほぼひと月で電池がなくなっちゃいます。まあ,夜は動作しないので,夜間はほぼ消費電流は0といっていいくらい小さいですが,昼間はほぼこの電流を消費します。
 
と言う次第で,結局,フォトMOSリレーをあきらめ,単純にMOS-FETでon/offするようにしました。
 
MOS-FETだったら電圧動作ですから,ゲートをonするのに電流はいりません。フォトMOSリレーは入力がLEDなので,どうしても電流を消費してしまいます。これなら最初からMOS-FETでドライブすりゃよかった。
 
使ったのはルネサスの2SK975。ID=1.5AでTO-92パッケージですから小さいです。
 
光スイッチ回路4.jpgこの回路でOKです[晴れ]
 
ついでに,モニタ用の赤色LEDをつけました。これも消費電流が大きいとバカにならないので,高輝度のものにして,電流は0.1mAくらいにしました。また,常時点灯だともったいないので,10秒ごとに瞬間的(20ms)に点灯するようにしています。
 
PIC基板1.jpg PICを使った基板です。
 
鳩時計内部.jpg こんな風に設置しました。
 
PIC基板.jpg 振り子の隣にLEDとフォトTrが顔を出します。
 
これでも瞬間的にパッと赤く光るので,今,照度スイッチがonしているな,とわかって便利です。
 
ようやくこれで実用化です。夜は鳩ぽっぽもお休みです.....。
 
 
おまけ
 
駅弁が大好きなiruchanのけふの昼ご飯は横浜・崎陽軒のシウマイ弁当。いつも東京へ出張したときは帰りに買って帰ります。東京駅ではいつもこれか,JREのチキン弁当と決めています......(^^:)。
 
崎陽軒復刻シウマイ弁当.jpg 微妙におかずも違います。
 
ただ,今回は復刻驛辨。見たこともない,緑色の掛け紙にびっくり! こういう古いの,iruchan大好きなんですよね~。そういえば,しらさぎに乗って名古屋へ行った時も,いつも松浦商店の復刻駅弁を買っています。これもとても美味です。
 
今回のシウマイ辨當はなぜかエビフリャアが入っているし,魚がブリの照り焼きなのもいつもと違います。フキの煮物か? と思ったらそれはセロリだったりして,とてもまたこれも美味なお弁当でした。