So-net無料ブログ作成
検索選択
前の10件 | -

コアレスモータ対応PWM式鉄道模型用コントローラの開発~その5・PICの利用~ [模型]

2017年3月25日の日記

前回,PICマイコンを使ってコアレスモータにも対応した鉄道模型コントローラを設計しました。

どうにもコアレスモータは性能がよすぎて,従来のコントローラを使うとつまみをほんの少し回しただけでスタートしてしまい,あまり低速では運転できないし,前照灯が点灯すると同時に走り出してしまうので,停車中に点灯させることができない,という感じです。

原因はいろいろ調べたところ,今まで作ってきたPWM式のコントローラの最低デューティが大きく,10%前後もあるため,性能のよいコアレスモータだとパルスが出始めた時点ですぐに回転してしまうため,と判断しました。実際,第4回に書きましたが,コアレスモータ機はデューティが5%くらいでも走り出してしまうようで,これでは従来のPWM式では対応できないものがあると思います。

なお,この最低デューティの問題は市販のPWM式コントローラでも同様のようで,実際,ネットを見ても皆さん,苦情を書いておられますね。

では,なぜ,PWM式コントローラの最低デューティが0%じゃなくて数%とか,ひどい場合には10%以上になってしまうのでしょうか。

ひとつはスイッチング周波数が高すぎるためです。

PWM式のコントローラは1回目に書いておきましたように,スイッチング周波数が高いほどモータや制御素子の損失が小さいためです。また,電圧をパルス状にしているため,モータが瞬間的に起動と停止を繰り返すため,電磁的な音が発生し,唸ります。ちょうど,チョッパ電車やインバータ電車と同じです。

特に,昔のチョッパ電車や初期のインバータ電車はサイリスタを制御素子に使っていて,スイッチング速度が遅いため,スイッチング周波数も300Hzとか,1kHzとか低かったため,かなりの電磁音を出しました。プーッと甲高い音を出して走っていましたよね......(^^;)。

最近はスイッチング周波数を上げて音が小さくなっているのはご存じの通りです。これは素子が高速のIGBT(ゲート絶縁型バイポーラトランジスタ)を使っていたり,電圧が2段(0→1/2→1)になっている3レベルインバータを使っているためです。

ついでに,今は小型のIGBTも作られていて,秋月電子さんなどで売られています。東芝のGT20J34なんて,250円です。600V,80Aの高性能ですが,同じTO-220のパッケージです。驚いちゃいますね。 

鉄道模型も全く同じで,スイッチング周波数は普通,20kHzくらいにして,人間の耳に聞こえないようにしてあります。市販のPWM式コントローラもこのような高い周波数となっています。 

ところが,こんなに高い周波数にしちゃうと,あまり低いデューティのパルスは出力できなくなってしまいます。iruchanは20kHzなんて,半導体じゃ,スイッチングは楽勝じゃん,と思っていたのですが,さすがに20kHzでデューティ1%とするとパルス幅は0.5μsになりますが,そんな狭い幅のパルスを出力するのは困難です。 

原因は出力の半導体にあります。また,使用している素子により原因は異なります。

まず,現在,広くモータやLEDの制御に用いられているMOS-FETの場合は前回も書いていますように,入力にキャパシタンス分(入力容量)があり,このコンデンサが入力信号が来てもその電圧を食いつぶしてしまい,なかなかMOS-FETがonする電圧(ゲートしきい値電圧VGS_th)に達しないためです。

MOS-FET入力容量1.jpg MOS-FETの各電極間容量

なお,真空管同様,MOS-FETには各電極間に3つのキャパシタンス分があり,これらのうち,入力容量CissはCg-dとCg-sの和です。 また,帰還容量Crssも要注意で,これはCg-dそのものです。

ちょっと,Spiceでシミュレーションしてみました。20kHzで,デューティ1%でドライブしてみます。 

2SK2466出力段.jpgMOS-FETの場合

2SK2466 入出力波形(20kHz, duty 1%).jpg やはり太いです。

もとのパルスがですが,実際にMOS-FETが出力する電圧はのように,幅が広くなってしまっています。

これは,ゲートの入力容量Cissと,ゲート抵抗RG10Ωが時定数を形成し,のように,ゲートの電圧が変化するためです。斜めに立ち上がっていますね。もし,Rgが100ΩだとMOS-FETはonすらしなくなってしまいます。

MOS-FETはいろいろありますが,VGSは大体,2~4Vくらいかけないとonしません。 バイポーラTrは0.6Vですから,大きな値です。簡単にPICでonできない場合もあり,とくに,最近のPICは3Vで動作するものが多いので,下手するとドライブできませんのでご注意ください。また,仮にドライブできていたとしてもMOS-FETが非飽和領域で動作していて,MOS-FETが発熱することもありますので,注意が必要です。▼の回路図で,ドライバ段の電源を12Vから取っているのもそのためです。PIC用の5Vラインから取るとドライバ段の出力は5V以下になってしまい,終段のMOS-FETのドライブ電圧が下がります。 

もし,RGを0Ωにできれば,もっと高速にできるし,実際,PWMコントローラの場合,この抵抗を入れずにPICと直結している場合も多いと思います。

ただ,オーディオ用のアンプなどの場合はこの抵抗は必須です。なぜかというと寄生発振と言って数MHzくらいで発振してしまうことがあるのと,スイッチング回路の場合はさきほどの帰還容量Crssのせいで大きなサージ電圧が発生し,MOS-FETを破壊することがあるためです。

と言う次第で,できればこの抵抗を入れておいた方がいいのですが,大きな値だとスイッチングが遅くなっちゃいますので注意が必要です。

一方,つい最近まで,電力制御の主役だったバイポーラTrは,と言うとこちらはスイッチング速度が遅いためです。

バイポーラTrはスイッチング速度がMOS-FETの1/10以下のため,信号の立ち上がり,立ち下がりにうまく追随できません。

2SD794 出力段.jpgバイポーラTr回路

2SD794 入出力波形(20kHz, duty 1%).jpg ありゃ?

▲のMOS-FETのときとはちょっと様子が異なります。一応,スイッチングはできるのですが,立ち下がりが遅いですね......。

バイポーラTrはスイッチング時には立ち上がり時間 ton, 蓄積時間 tstg, 立ち下がり時間 toff の3つの速度があり,規格表にも書いてあります。

といって,スイッチング用と称しているTrでないとあまり規格表に書いていないのが困ったものなんですけど....。 

ton と toff はほぼ同じで,大体,0.5μs~1μsくらいです。一方,tstg は2~3μsもあって遅いのです。

tstg はP-N接合面付近で,キャリア(電子と正孔)が中和している領域があり,そこが完全に元の状態に戻るまでの時間です。元の状態に戻ると電流を遮断し始めます。 

MOS-FETはキャリアの蓄積効果がなく,この tstg の部分がないので,やはり速いです。もとから ton やtoff は10倍くらい速いのですしね。

というのが実際に教科書に書いてある話なのですが,▲のシミュレーション結果を見ると,立ち上がりの部分が非常に小さく,蓄積時間 tstg は入力パルスがoffになってから,少しまだ出力が水平となっている部分があって,その時間のことですが,ここもj短いです。

Tr switching waveform.jpg トランジスタのスイッチング時間測定条件

問題は立ち下がりの toff の部分のように思います。

なんか,実を言うと,iruchanもちょっとこのシミュレーションは少しおかしいという気がしているのですが.....。もっと立ち上がりは遅いはずだし,立ち下がりは逆に遅すぎると思います。

原因は負荷電流で,今回,100mAくらいなんですが,1Aも流すともっと立ち下がりは速いし,バイポーラTrと言っても意外に速いと言うことがわかりました。負荷が大きいと,キャリアの中和領域が早く消えるようです。

しかし,やはりパルス幅はMOS-FETの約2倍となってしまいます。

なお,スイッチングを高速化するには,MOS-FETの場合はこの入力容量の充放電を速くすればよいわけですから,短時間に大量の充放電電流を流してやればよく,そのため,プッシュプルドライバを入れてやれば解決する,と言うのが前回までの話でした。

ところが,バイポーラTrの場合は素子そのものの物理的な現象のため,打つ手がありません。 高速化コンデンサと称して,10~100pFくらいのコンデンサをRBにパラにすると速くなりますが,これとてやってみると大して速くはなりません。

だから,結局のところ,やはり鉄道模型のコントローラにはMOS-FETが適していると判断せざるを得ません。

と言う次第で,今回,設計をやり直し,下記の通りとしました。

PWM式コントローラ(PIC・調光)1.jpg 回路

さすがに結構,大規模な回路変更なのでプリント基板も一から作り直しました........orz。

なお,今回,過電流保護は0.6Ωの抵抗と2SC1815で構成しています。1A以上の電流が流れると2SC1815がonし,2SK2382のゲート電位を下げるので,電流を絞ってくれます。面倒でしたら,抵抗1本だけでもOKです。そのときは抵抗値は1.6Ωくらいにしてください。ただし,この場合,この抵抗による電圧降下が大きく,1A流したときは最大出力電圧は10Vくらいに下がりますのでご注意ください。 それはちょっと困るな,と言う方はこの抵抗の代わりにポリヒュースを入れてください。

PIC controller & driver PCB.jpg 最終的な基板です。

従来型との比較.jpg 従来型(左)との比較です。

従来型はタイマIC555とコンパレータNJM2903DLM393互換)との組み合わせです。 

プリント基板(PIC).jpg プリント基板図(パターン面)

 

プリント基板部品配置(PIC).jpg 部品配置(部品面から見た図) 

基板サイズは55mm×30mmです。 

ピンクのLEDはパイロット用,オレンジは出力のモニター用です。つけておくと何かと便利だと思います。 出力のMOS-FETのドレインにスナバ回路(100Ω+0.01μF)も入っていますが,どちらも特に不要なので,フリーホイーリングDiの11EQS06以外はつけなくても構いません。

最低デューティ(PP driver).jpg デューティは1.6%となりました。

残念ながら,最低デューティは最初,基板を作り直した時点では2.6%くらいで目標に到達しなかったので,多少,回路定数を変更しました。

でも,結局,1%以下にすることはできず,▲のように1.6%となりました。時間的にはパルス幅0.83μsと言ったところです。0.5μs以下にしたかったんですけどね.....。

原因はやはりMOS-FETの入力容量です。

今回,出力には東芝の2SK2382を使いました。もうじき東芝の半導体も身売りされて消えちゃいますので.....。

第2回に現行のMOS-FETの特性をまとめていますが,2SK2382はCissが2000pFもあり,最近のMOS-FETなので非常に大きいです。やはり,KATOのKC-1改で使用したNECの2SK2412(Ciss=860pF)の方がよかったと思います。今回は素子の選択ミスです。 おそらく,2SK2412だったら最低デューティは1%以下にできたと思います。

ドライバ&出力段.jpg さようなら......。

今回,ドライバの2SA10202SC2235と出力の2SK2382,レギュレータのTA78L05は東芝製を使いました。いずれも手持ちです。本当は2SA1020のコンプリは2SC2655ですけどね....。

最近はTO-92型のTrも数が減り,2SA1020も秋葉じゃ台湾UTC社のものが幅を利かせています。あまり外国製は使いたくないのでパスです。真空管時代からの名門東芝も半導体部門の売却が決まり,とうとう消えていきます。それこそiruchanは2SB54の時代から東芝のトランジスタを使ってきたので残念です。北陸の田舎じゃ,ソニーや日立はもちろん,NECだって部品屋さんでは売っていませんでしたから.....。

まあ,2SK2382でも最低デューティは1.6%ですから,モータは回転しませんし,LEDも非常に小さく,チップの表面がうっすらと点灯するくらいですので,十分,常点灯には対応しますけど......。

調光つまみmaxデューティ.jpg 調光つまみmax.の状態です。

今回,走行用と調光用でKC-1みたいにつまみを分離しました。こうしておくと,別個に調整できて便利です。

調光用は最大デューティ10%となるようにソフトを組みましたが,実際には最大12.0%でした。まあ,こんなものでしょう。おそらく,調光用つまみを最大にすると模型も走り出してしまう,と思いますので,前照灯は点灯しても走行はしない,というレベルで固定しておきます。

無事に動作しましたので,近日中にケースに入れてみたいと思います。  


コアレスモータ対応PWM式鉄道模型用コントローラの開発~その4・PICの利用~ [模型]

2017年3月12日の日記

さて,このところ,KATOのリニューアルされたD51用のコントローラを作っています。このD51は動力も刷新され,新たにC62で採用されたコアレスモータを採用しています。

ただ,いろんな人が書いておられるように,どうもコアレスモータは従来のコントローラとの相性が悪く,低速がスムーズだと人気の高いPWM式のもので運転しても少しラピッドスタート気味だし,また,常点灯にも対応せず,停止しているときには前照灯が点灯しなくて,走り出すと同時に点灯する,という感じです。

これを解決するべく,iruchanはこのところ研究しています。前回までで往年のKATOの名コントローラKC-1を復活させ,この問題を解決することができました。

さて,今回はPICマイコンを使ったPWM式コントローラを製作したいと思います。

遅まきながらiruchanも去年からPICに取り組んでいます。前回はLEDをチカチカ点灯させるマーカーを作りました。

今までやらなかったのは何より道具をそろえるのが大変だと言うこと。内部のROMにプログラムを書き込むためのライターや言語などの開発環境の準備が必要です。おまけにライターは古いものはRS-232Cしか対応していないので,USB→RS-232C変換器なんかも準備しないといけません。結局,なんだかんだ言って1万円くらい投資も必要です。

なお,道具としてはまずはMicrochip社が出している,ライターのPICkit3が必要です。

ただ,これはあくまでもライターで,PICに書き込むには基板上に通信用のヘッダーを設けないといけません。デバッグするのに便利なんですが,いちいちプリント基板にヘッダーを設けるのも困りもの。やはりPIC単体で書き込みをして,装着するプリント基板には何もない方がよいと思います。

ということで,マルツが売っているPICマイコンプログラミングアダプタも必要です。

PICkit3 & MPIC-DPPA.jpg PICkit3と変換アダプタ

変換アダプタは秋月などでも売られていますが,マルツのが一番使いやすいと思います。

なお,書き込みソフトはPICkit3の場合はやはりMicrochip社の統合開発環境MPLAB IDEを使いますが,開発言語はiruchanは別のソフトなので,MPLAB IDEをインストールすると一緒にインストールされる書き込みソフトMPLAB IPEのみ使います。

ま,それにしてもMPLAB IDEは無料なので助かりますけど。 

ただ,GUIは英語しかないし,このIPEと言うソフトもクセがあって非常に使いにくいです。まずは12F1822と接続できず,一歩も先に進みません。

原因はUSB経由でPICkit3から装着したPICに電源を供給しないといけないのですが,デフォルトで非供給となっているためです。また,この電源の設定が基本モードじゃだめで,Advancedモードにしないと出てこない,という困ったものです。

これに気づくのにずいぶん時間がかかっちゃいました。

IPE-2.0'.jpg Advancedモードに移行します。

IPE-2.4'.jpg

   電源のチェックが必要です。このあと,Operateをクリックします。

と言う次第ですが,なんとか道具もそろってようやく書き込みもできるようになったので,いろいろとPICをいじっています。

それで,昔からやりたかったのはPICで模型を制御しよう,と言うことなんです。

もとよりPICというのは自動車や,各種センサを用いた自動計測などに利用されていることもあり,モータやセンサの接続が簡単にできるようになっています。特に,モータの制御に関してはPWMの機能を持つPICがあります。

と言うことで鉄道模型のコントローラに応用したいと思っていました。また,世の中にはたくさんの先輩がいて,すでに鉄道模型用のコントローラを作っておられますね。

と言うことでiruchanも去年から取り組んでいました.......。

ところが,結構やはり大変です。よくわからない不具合連発で,なんとかようやくPIC使用のコントローラができるようになったので報告したいと思います。

また,ついでに今回のコアレスモータ対応コントローラにしたいと思います。もちろん,PICに取り組み始めたときはそんなつもりはなかったんですけどね......(^^;)。

さて,まずはPICに何を使うか,と言うことになります。

少なくとも,鉄道模型のコントローラはボリウムで指令電圧を作り,その電圧に比例したPWM信号を作らないといけないので,アナログ入力ポートを持ったPICが必要です。

また,当然のことながらPWM機能のあるPICでないといけませんね。

ただ,実は最初,iruchanは知らなかったのですが,PICはPWMはどんなPICでも使えるようになっているので,特にPWM機能のあるPICでなくてもよかったんですね。

PICが発生させるPWM波はソフト的に発生させるソフトPWMと,PIC内部にPWM波発生回路を持っていて,それにPWM波を発生させる,ハードウェアPWMの2種類があります。後者の機能を持っているPICは限られますが,前者はどのPICでも出力可能です。

と言う次第で,単に指令電圧を入力できるアナログ入力ポートのあるPICなら何でもいいんですが,iruchanは12F1822を選択しちゃいました。

12F1822はアナログ入力ポートを3つ,ハードウェアPWMの出力ポートを2つ持った,8ピンのDIPになっています。わずか8本しかピンがないのに,これだけの機能を持っているのに驚きます。でも,これはトラブルのもとで,当たり前ですけど,プログラム中でどのピンを何で使うか,宣言しないと思った動作をしませんのでご注意ください。

これをこんな風に接続すれば,鉄道模型のコントローラの配線ができちゃいます。 

PWM式コントローラ(PIC・最簡略版)1.jpg一番簡単な回路

ついでに,せっかくアナログ入力ポートが3つもあるんだから,調光用と走行用で指令電圧をわけ,2つのボリウムを使ってそれぞれ調整できるようにしたいと思います。PWM式のコントローラなんだから,若干,つまみを回した状態で停めておけば,前照灯も点灯して常点灯になるんですけど,調光用のつまみを別に設ければ,走行用のメインのボリウムを完全に絞った状態でも前照灯や室内灯が点灯したままになるので使いやすいです。製作中のKATOのKC-1改コントローラもそうしました。

ということで,調光用にボリウムをもう1個設けた場合はこのような回路となります。

PWM式コントローラ(PIC・調光).jpg 調光機能を持たせた回路

それにしても簡単だな,と思います。PICが5Vのパルスを発生させるので,その電圧でMOS-FETをon-offすればいいだけのことです。

また,PICを使うとMOS-FETのドライブ電圧が5Vで固定されるのを利用して保護回路を構成することができます。MOS-FETのソースに入っている1.6Ωの抵抗がそれで,たった1本の抵抗で電流制限型の保護回路となります。

ソフトは前回と同じ,Great Cow Basicを使いました。PIC用のフリーのBASIC言語です。本当だったらPICはマシン語か,C言語なんでしょうけど,今から覚えるのも大変だし,と言うことでiruchanはBASICです。

ソフトは上記の単一調整のタイプと,調光&走行が別になっているものと共通ですので,12F1822に書き込めば,どちらの回路でも使用できます。

☆ 

ということで,ソフトを書き込んでOKなんですけど,ここからが大苦労でした。

やっぱりPICが動きません......orz。

今回,内蔵クロックを使うことにし,そのようにソフトを組んだのがまず問題でした。

通常,PICはセラミックレゾネータを使って外部クロックとすることが多いのですが,レゾネータの部品が意外に高いので,もとからついている内蔵クロックを使おうと思ったのですが,なかなかそれが動きません。いろいろwebや本を調べてもよくわかりません。

ようやく,Great Cow Basicで指定の方法がわかりました。#config FOSC=INTOSC と宣言するだけだったのですが。PICにより,この宣言しているところが違うんですね。

ほかに,PWMを出力するのにも苦労しましたし,最後までA/D変換がおかしく,まいりました。今回,A/Dを2チャンネル使っているのですが,どうにもどちらを動かしても変な動作となります。調光用に最大10%のデューティしか出力しないようにしたのに,調光用も100%となったり,と言う具合で,非常に苦労しました。

ようやく,このところ,うまく想定したとおりに動くようになりました。

一応,ソフトをupしておきます。直接,hexファイルをupすることはできないのでテキストファイルにしておきました。このまま,拡張子を.txtから.hexとして,ライターで書き込めばPICにソフトが転送できます。ご利用ください。

PWM controller.txt  右クリックして "リンク先を保存" してください。

さて,テストをしてみます。

ところが....。 

PWMコントローラ試作基板.jpg 試作基板です。LEDでテスト中。 

出力にLEDをつないでテストしてみますと,どうにもやはりまだおかしい。

調光用は最大10%のデューティにしたので,そんなに明るくないし,また,LEDも割にスムーズに点灯するような感じですが,走行用のボリウムを回すとどうにも変で,なかなかLEDが点灯しません。かと思うと,ある程度回したところで,パッと言う感じでLEDが点灯します。

もし,モータを回しているんだったら,しばらく,ボリウムを回転しても全くモータが回らないのに,あるところで突然回り出す,という感じです。これじゃラピッドスタートですね。

ソフトは間違っていませんし,最初は回路の不具合かとプリント基板をチェックしますが,どこもおかしくありません。

でも,前回のKATOのKC-1改を作ったときに経験したのですぐに原因が判明しました。オシロをつなげば文字通り,一目瞭然でした。

やはり,予想どおり,かなりボリウムを回したところで,突然パルスが出力され,しかもそのパルスがいきなりかなり太い!

実際,最低デューティは8%くらいです。こんなはずはないんですけどね。KATOのKC-1改の場合は回路を改良して最低デューティは1%以下となるようにしました。本機も回路を見直さないといけません。

最低デューティ(試作機)1.jpg これで最低デューティです。 

これは,例によって制御用のMOS-FETの入力容量のせいです。また,offしたあと,配線のインダクタンスと共振して若干,波形が波打ってしまっています.....orz。 

MOS-FETは真空管同様,電圧制御素子で,ゲートに加えられる電圧でドレイン電流を制御できる,という大変な優れもので,スイッチング速度もバイポーラTrのようにキャリアの中和などの現象がないので非常に速いし,なによりゲート電流はないので制御電力も不要なのが大きなメリットです。

でも,ここに落とし穴があります。

実際にはMOS-FETの制御にはちゃんと電流を流す必要があり,もちろん,ゲートの消費電力は0じゃありません。

なんでか,というとゲート~ソース間に非常に大きな静電容量があり,昔は400pFくらいで,それでも巨大な容量だったのですが,最近のものは2000pFを超える容量となっています。この容量に十分に電荷が溜まらない限り,MOS-FETはonしないのです。また,いったんonしちゃうと,offするときはこの容量に溜まった電荷を抜かないとoffにならないので,offにするまでの時間もかかっちゃいます。なんか,ものすごくアホな話だな~と思います。

その点,真空管は同じ電圧制御素子なのに入力容量は小さく,ミラー効果がある3極管でも100pFを超えることは少ないです。5極管だと1pF以下で,むしろ配線やソケットなど,浮遊容量の方が大きいくらいです。また,バイポーラTrはベース~エミッタ間がもとから導通していて,電流を流して使うのでインピーダンスが低く,この入力容量はもとから小さいし,問題になりません。 

ということで,実はMOS-FETもうまく使ってやらないと全然スイッチングは速くないのです。

その意味で,KATOのKC-1は出力にPNPのバイポーラTrを使っていますが,まだMOS-FETが一般的じゃない頃の設計なので,こうなっているんでしょうけど,無事にこの問題を回避しています。バイポーラはスイッチング速度がMOS-FETの1/10以下なのですが,入力容量が小さく,意外に高速でパルスをon-offできます。実際,KC-1だときれいに低デューティの高周波のパルスが出力されるようです。  

したがって,MOS-FETをドライブするにはこの静電容量をいかに高速で充電したり,放電したりするか,という点が問題で,対策として,ドライバ回路が必要となってしまいます。結局,バイポーラTr同様,MOS-FETといえども電流でドライブする必要があるし,ドライバ段が必要なんですね。

でも,市販のPICを用いた鉄道模型のコントローラにはこのドライブ回路はついていません。だから市販のPWM式コントローラとコアレスモータの相性が悪い,なんてことになるんじゃないでしょうか。もっとも,模型のコントローラばかりじゃなく,ごく普通のモータ制御回路でもドライバ段はついていない場合がほとんどです。部品が増えちゃって,コスト増要因ですからね。

で,なんでつけていないのかというと,パルスが十分広いとき,つまりデューティが高いときは全く不要だからです。

普通のモータ制御の場合はデューティが数十%以上のところで使用しますし,起動時にラピッドスタートになったって,問題になることはないでしょう。

でも,鉄道模型は起動時が命ですし,それこそ,運転時には起動をいかにゆっくりするか,と言うことにをかけている模型マニアの皆さんも多いと思います.....(^^;)。

まあ,命ほどじゃなくても指先を神経を集中している,と言う人は多いと思います。

と言う次第ですが,鉄道模型のコントローラは最低デューティ付近の制御が重要であることに気づきました。この点,通常の自動車や産業用モータのPWM制御とは大きく異なります。これらは数%のデューティで回転させる,と言うことはないでしょう。もし,そういう状況ならもっと定格回転数の低いモータに替えるとか,ギヤードモータならギヤ比を変える,と言う話でしょう。iruchanはTomixの5001パワーユニット改PWM式コントローラやKATOのKC-1改コントローラで最大出力デューティを100%とするのに苦労しましたが,意外に問題は最低デューティにあったんですね。

"敵は最低デューティーにあり!!" 

   (明智光秀の声で!...........ほんなもん知らんて!) 

まずは鉄道模型のモータが回転し始めるデューティについて考えてみたいと思います。

大体,10%以上のところで回転しはじめる,と言うのが普通だと思います。LEDはデューティで言うと,もう少し小さく,5~8%くらいの値です。

ところが,コアレスモータはインダクタンスが小さく,トルクも大きいことから,数%のデューティでも起動してしまうと思います。

となると,従来のPWM式コントローラでは,ボリウムを回していってパルスが出始める位置に来たときにはパルスのデューティが高すぎ,LEDが点灯すると同時にモータも回転してしまって,いわゆるラピッドスタートになっちゃうんじゃないかと考えています。

実際,今回,オシロをストレージモードにして,LEDの点灯開始およびモータの起動開始時点のデューティを測定してみました。

TL494+KATO EF70.jpg 測定中。

メーカ     車両   LED点灯開始(%)  モータ起動開始(%)  モータ

KATO   D51ギースル  3.38       4.60~8.04     コアレス 

KATO   EF70     11.2        12.7~14.9     コアつき

KATO   DD51     10.3       34.0~45.7 コアつき

Tomix   ED61     6.7        34.5~62.3 コアつき,電球色LED化

Tomix   EF510     10.3        34.0~59.9 コアつき,電球色LED化

残念ながら,コアレスモータ機は1両しか持っていないのですべてのコアレス機で本当にこうなのか,はっきり言えませんが,やはり,かなり低いデューティでモータが起動してしまうことがわかります。コアつきモータ機で12%~40%くらいなのに対し,ほんの数%で起動してしまうことがわかります。

おかげでLEDの点灯デューティとの差が小さく,やはり常点灯にも対応しにくい,と言うことがわかります。

また,古い機種ほどデューティが高いことがわかりますね。Tomixの機関車はいずれもかなり古いものです。それに,モータの起動開始はかなりばらついてしまいます。オシロも通常のモートでは測定不可で,ストレージモードにしてなんとか測定できる,と言うレベルでした。 

PWM デューティ解説.jpgコントローラのPWM出力

以上の結果から,実際の鉄道模型のPWM式コントローラの出力をグラフにしてみるとこんな感じではないかと思います。

本来は ━ の線のように,デューティは0~100%で直線状に変化するのが理想です。 若干,ボリウムの0゜付近には遊びを設けておかないとつまみをちょっと回しただけで模型が走り出しちゃいますので,通常は少し余裕が設けてあります。

ところが,▼の理由で,通常のPWM式コントローラは最低デューティは0%ではなく,  のように数%程度のところから急に立ち上がります。

昔のようにコアつきモータの場合はモータの起動デューティはこれより高かったので問題なかったのですが,どうもコアレスモータはこれより低い位置で起動してしまうようです。 

一方,コントローラのスイッチング周波数が低い場合は,最低デューティも小さくすることができ,▲のグラフでパルスの出力開始地点はもっと原点に近いところとなるはずで,うまくすればコアレスモータの起動デューティより低くできるはずです。 

ということから以前は,低周波のPWMがこの対策となると考えていました。

確かに,KATOのKC-1では50Hzくらいのスイッチング周波数ですし,iruchanも以前から300Hz/20kHzの切替式で作っておいて,たまに300Hzで運転しているんですが,確かに300Hzだとコアレスモータでもスムーズに起動します。

それじゃ,そのような低周波のPWM式コントローラを作ればいいじゃん,と思っちゃいますけど,これをやるとモータが瞬間的に,起動,停止を繰り返すため,モータが振動し,大きな音を立てます。D51なのに,チョッパ電車みたいにプーッと音を出して走るのはまずいな,と思います。

そこで,KATOのKC-1では高周波のPWMを追加し,モータが唸らないようになっています。KC-1は低周波50Hz,高周波20kHzの2周波PWMとなっていて,高周波パルスを出しているため,モータの振動が抑えられ,実際に運転してみても,かすかにモータが唸る程度です。

では,どうして低周波のPWMだとスムーズに起動するのか,と言うと,これは時間が関連しています。

もし,仮に1%のPWM波を作ったとして,そのパルス幅は20kHzでは0.5μsですが,50Hzでは0.2msもあります。

実は,いくらMOS-FETが高速だからと言っても,0.5μsのパルス幅を作るのは入力容量のせいで結構,難しいことなのです。

一方,0.2msもあるパルス幅を作るのなら簡単で,立ち上がり,立ち下がりに遅れがあっても,幅が0.2msもあるのなら大差ないですしね。要は1%のデューティのパルスを作るにはやはり(パルスの継続)時間が関連しているのです。

では,ちょっとシミュレーションしてみませう。いつものようにLTspiceでシミュレーションしてみました。

MOS-FET simulation circuit.jpg シミュレーション回路 

2SK2466(ton=0.5μs)-1.jpg 2SK2466のとき

   あちゃ~~!! 予想どおり,2SK2466はonしません。こりゃ,あかんわ。

ゲートの電位をみてみますと,静電容量のせいでゲート電位の立ち上がりがゆっくりで,ゲートしきい値電圧VGS_thに到達する前にパルスが終了してしまい,結局,2SK2466はonしないのです。

ですから,もっとパルス幅が広くならないと2SK2466はonしないし,そのため最低デューティが高くなってしまうのです。

実は,MOS-FETの立ち上がりが遅くなるのは入力容量ばかりでなく,ゲートに挿入される抵抗も原因で,これが時定数になり,MOS-FETの起動が遅くなります。これをなくしてしまってPICと直結してもよいのですが,これがないと寄生発振を起こしたり,off時にサージ電圧が発生してMOS-FETを壊すことがあります。

最低デューティ(試作機・PIC~MOS-FET直結).jpg PICと直結したとき

先ほどのオシロの写真と比較していただきたいのですが,確かに最低デューティは1.3%ほどと非常に狭くなりましたが,これ以上,小さくはできませんし,パルスがoffしたあと,はね返りがあります。これがサージ電圧で,ひどい場合にはVDSの耐圧を超えてMOS-FETを破壊することがあります。まあ,今回,試作基板で使用した2SK975はVDS=60Vなので壊れることはありませんけど。 

一方, 往年の東芝製のMOS-FET 2SK442だとこうなります。

2SK442(ton=0.5μs).jpg あれ? ちゃんと動作します。

ちなみに2SK442はCissが330pFと,2SK2466(3250pF)の1/10です。 2SK442はCissが小さいので,ゲート電位もすぐに立ち上がっているのがおわかりいただけると思います。

2SK442は古いMOS-FETで,おそらく1980年代の製造です。この頃のMOS-FETはまだ電流的に大容量でなく,ID=10Aですが,2SK2466は30Aです。最近ではサンケンのEKI-04027だと85Aです。これで同じTO-220パッケージなんですからね。驚いちゃいます。

その代わり,最近のMOS-FETは入力容量が増えており,2000pFを超えるのが普通です。そんなので20kHzのスイッチングをやって0.5μsのパルスを出させよう,なんて無理です。半導体メーカさんにお願いしたいのですが,もっとCissの小さなMOS-FETを作ってもらえないでしょうか。たとえば,VDS=30V,ID=5Aで,Ciss=50pFにして,3VのPICでもドライブできるよう,VGS_th=1.5Vなんてのを作り,鉄道模型スイッチング用なんてどうでしょうか.............無理。

一方,最近ではほとんど大電力回路に使われなくなっているバイポーラTrはどうかというと,

2SD794(ton=0.5μs).jpg 

     ちゃんと出力できるようですけど....。

2SD794(ton=0.5μs)-1.jpg 

     よく見ると立ち下がりが悪いです。

バイポーラTrはonするときは入力容量の問題がないので高速ですが,offにするときはP-N接合面付近のキャリアが中和されている領域がなくなるまでon状態となります。シミュレーションしてみるとデューティは倍くらいになっちゃいます。これでもonしないMOS-FETよりマシ35という気がします。 

う~~ん,とゆ~ことで,なんかいつも思っているんですけど......。

iruchanはいつも, コンデンサと女房は新しいほどよい,と思っています.....(^^;)。

真空管アンプのカップリングコンデンサには最新のフィルムコンを使うことにしていますが,これは古いオイルコンやペーパーコンは吸湿してリークするため,出力管を傷めてしまうからです。嫁はんも結婚したら数年で絶縁破壊し,ちょっとした過電圧で爆発して危険物に変化してしまいますからね.....。

ただ,iruchanは昔から 半導体と真空管は古いほどよい,と思っていました。2A3より45300Bより205Dの方が音がよいし,MOS-FETよりV-FETや2SA627/D188なんかのバイポーラTrの方が音がよいですからね。最近はSiC半導体がオーディオマニアで受けていますけど,iruchanは全く興味ありません。

鉄道模型のコントローラも古い半導体の方がよさそうです。MOS-FETは古い方がCissが小さいですからね。

と言う次第で,対策としては出力のMOS-FETのドライブ用に新たにドライバ回路を挿入する必要があります。前回のKATOのKC-1改でもドライバを挿入して回路を高速化しています。

前回,KATOのKC-1改の場合も,調光用の24kHzのパルスがやはり最低デューティが25%にもなっていて,ドライバ回路を挿入しています。

ただ,ドライバというとよく使われるのがエミッタフォロアなんですが,シングルでは問題を生じます。

PWM MOS-FET single driver simulation circuit.jpg シングルドライバ 

2SK2466(ton=0.5μs single driver).jpg 2SK2466をドライブしたとき 

MOS-FETの入力容量を充電するときは速いのですが,放電するときは1kΩの抵抗を介してGNDに放電されますので,遅く,いつまでもMOS-FETがonしたままです。これじゃ最低デューティは20%以上となってしまいます。 

以上から,やはりシングルのドライバはダメで,MOS-FETの入力容量を充放電するにはプッシュプルドライバにする必要がありますが,KC-1改のときに使用したテキサスのTL494は出力回路がエミッタフォロアになっていて,規格表を見ても出力電流は250mAもあるので,充電側はTL494に任せ,シンク側のみTrを使い,変形プッシュプルドライブ回路としました。回路が簡単で済みますしね。

MOS-FET single driver simulation circuit.jpg 変形プッシュプルドライブ回路 

今回,最初は同じ回路で考えたのですが,改めてMicrochip社の12F1822の規格表を見ると,ソース・シンク電流25mAと記載されています。 ちなみにこの場合,ソース電流がMOS-FETの入力容量の充電電流で,シンク電流が放電電流と言うことになります。なお,ソース電流をはき出し電流,シンク電流を吸い込み電流と書いてある場合もあります。

これは,本来ならとても大きな値なのですが,▲のシミュレーション回路で調べてみると,不足していることがわかりました。放電側は若干小さめですが,充電側は100mA以上流さないと0.5μsのパルスを出力できません。

と言う次第で,結局,プッシュプルドライバとしないといけませんでした。また,使用する素子も定番の2SA1015/2SC1815のような小型Trじゃダメで,ひとつ上の2SA965/2SC2235などの出力用のものが必要となります。う~~ん,なんかこれじゃ半導体アンプだな~~。 その割に出力の半導体はシングルアンプかよ~って感じですけどね......orz。

MOS-FET PP driver simulation circuit.jpg プッシュプルドライブ回路

MOS-FET PP driver 波形.jpg 各部の電流,電圧

2SK2466+driver(ton=0.5μs).jpg 見事に出力できます。

これでようやく20kHzでデューティ1%のパルスを出力できることがわかります。

せっかく,プリント基板を作ったのですけど,残念ながらこれで ボツ です。来週は新たにドライバを搭載した基板を作ってテストしてみたいと思います。 

 

2017年3月20日追記

ドライバを追加した基板を作りました。

3連休なので無事に完成するか,と思ったのですが意外にトラブって土曜に基板を作ったのに,ようやく今日,正常に動作するのを確認できた程度でした。

一応,最低デューティは2%ほどにできたので,非常に低くできましたが,目標としていた1%を下回りませんでした。もうすこし回路を調整します。詳しくはまた次回です。どうも申し訳ありません。

PWM contoller PCB driver1.jpg ドライバを追加した基板


冬のタウシュベツ&襟裳岬ツアー [紀行]

2017年3月4日の日記

寒いところ大好きなゐるちやんはまたまた性懲りもなくかやうなところへ行つてをりました。

襟裳岬.jpg すげ~~っ!!

襟裳岬へ一度,行ってみたいと思っておりました。ただ,実を言うと,どんなところか,全く知りませんでした。道内でも全国的な知名度では一,二を争うくらい有名だと思いますけど,有名な割にTVで見たりすることはないのではないでしょうか。こんな素晴らしい絶景を見られるとは思いもしませんでした。岩肌に雪が積もってとてもきれいでした。天気も快晴だったし,風が強くてとても寒かったけど,本当に行ってよかったです。

そして,今回,ぜひ,リベンジしたいと思っていたところがあります。

タウシュベツ1.jpg 本当に美しいですね

昨年8月に一度,来ているのですが,夏は糠平湖はほぼ満水で,文字通り,港内で触雷して着底,という状況でした。

冬だと渇水期でほぼ全景を表しますし,凍った湖面に美しい姿が映え,とても美しいので,今度は冬に来てみたいと思っていました。

と言う次第で,今回,冬にタウシュベツ川橋梁と襟裳岬を訪ねることにしました。ついでに今度のダイヤ改正で廃止になる,千歳線・美々駅と根室本線・稲士別駅を訪ねてみたいと思います。

出発は2月24日(金)と決めました。

ところが.......。

前日の午前4時頃,室蘭本線・洞爺~有珠間を走行中の隅田川発札幌タ行きの3055レの機関車が脱線し,室蘭本線が不通となってしまいました。

朝,ネットでニュースを見て仰天。

機関車は赤スカの8号。おまけに重連で,"おっ,先頭赤スカで重連じゃん" なんて思っちゃいましたけど.....。ちなみに次位の機関車は回送だったようです。

まあ,画像を見ると複線区間だし,機関車の1台車が脱線していますが,それほど線路が傷んでいるように見えませんし,複線だったら最悪,単線で開通するかも,と思いました。実際,JR北海道のホームページを見ても,最初は14時頃開通予定,と出ていました。これなら何とかなるかもしれません。

ところが,じきにその表示は訂正され, "再開の見込みはたっておりません" となりました。NHKもそのようにニュースで伝えています。おそらく,事故も続いているし,国交省の調査が入るのでしょう......orz。

それに,複線区間に見えたのは北入江信号場で,先頭の機関車が分岐器を超えたところで脱線したようで,後続の貨車が本線を支障しているので,単線運転もできるわけがありません。そもそも,札幌~函館間のいわゆる海線の区間はほとんど単線区間がないのに,ごくわずかに残った単線区間で脱線しています.....。 

いままで,実を言うとiruchanが行くところ,必ず事故が起こる,というのがジンクスになっていて,家族からも恐れられています。

最近では,一昨年,旧白滝へ行ったときには翌日,旭川に近いトンネルが漏水による火災で函館本線が不通となっているし,瀬野八へ行った後も大雨で崖崩れが起き,通りがかった普通電車が脱線して山陽本線が不通になっています。どちらも帰りに通ったところなんですけど.....。

さすがに今回は行く前だったので焦りました。この分では,明日も不通となるのは間違いなさそうです。 

残念ながら,今回,室蘭本線の東室蘭~室蘭間が未乗だったので,函館空港へ飛んで,そこからスーパー北斗7号→室蘭→スーパー北斗9号と乗り継いで,この区間を乗りつぶす予定でしたが,あきらめました。

とりあえず,飛行機を探しますが,函館~札幌間は全滅。しかたないので,早割で買っていた函館便をあきらめて速攻で新千歳の便を予約しました。当日中に決済すればよいので,ギリギリまで待ちましたが,夜8時になってJR北海道のwebに明日の運休が出て,飛行機で新千歳へ直行するしかなくなりました。

と言うわけで,予定よりずっと早く,新千歳に着いちゃいました。

早すぎるんですけど,まずは美々駅へ。ここで1時間ほど撮影しました。残念ながら,室蘭本線が不通なので,貨物は来ないし,特急も走っていません。

南千歳駅名標.jpg この駅名標も修正ですね.....。 

新千歳空港から快速エアポートで一駅,地上に出たら南千歳駅で乗り換えます。ここも一駅で美々に着きます。

美々駅4.jpg 

     美々駅。kitacaの読み取り機があります。

まだ札幌都市圏だし,すぐ西側は新千歳空港の滑走路があるし,頻繁に上空を飛行機が飛んで,割りに賑やかなところなんですが,駅前にはなにもなく,人家もありません。まあ,飛行場のすぐ近くだから高い建物は建てられないし,農場ばかりなので人もそれほど住んでない,と言うのもわかりますが,通勤電車が走るようなところで駅が廃止になる,というのはちょっと驚きです。

だから,いくら廃止になるといっても,電子カード式乗車券が使えるし,周囲も人家が少ないと言うだけで,”秘境駅” なんてわけはなく,このカテゴリーに入れちゃって紹介している人がいるのは変な気がするんですけどね.....。でも,廃止になっちゃうくらいなんで,やはり秘境駅なんでしょうか。

美々駅2.jpg  後ろは航空用のレーダー?

美々駅1.jpg 下り本線と中線です。

ここは撮影地としても知られていて,"北斗星" 廃止の頃はすごかったでしょう。上り列車をきれいに撮れる場所のようです。 

美々駅3.jpg 時刻表

秘境駅というなら1日に2,3本しか停まらない駅,と思いますけど,ほぼ1時間に1本の割合で列車が来ます。 ただ,下手すると普通列車も通過するので,ちゃんと時間を調べておかないと鉄ができません。

やはり待っていても貨物列車や特急は来ませんので,改札機でまたピッとやって南千歳に戻りました。

ここからはスーパーおおぞら5号で帯広へ向かいます。 

お昼は本当はスーパー北斗9号の車内で長万部のかにめしを食べる予定で,JR北海道の客室乗務員事務所に電話して予約しておいたのですが,これもキャンセルとなっちゃいました。久しぶりに長万部のかにめしが食べられると思ったのに......。

ほっきめし.jpg 南千歳駅のほっきめし

でも,南千歳の駅ホームの売店でおいしそうな駅弁をゲットしてスーパーおおぞら車内で食べました。ほっきめしって初めて食べましたけど,おいしいですね~(^^)。いつも,回転寿司の店でホッキ貝サラダを食べてるんですけど,ホッキ貝の炊き込みご飯なんてあるのは知りませんでした。また買お~っと!! 

さて,石勝線内はやはり大雪。1時間以上かかるトマムまでは大雪で,外は吹雪いていました。

しかし,山を下りてくると快晴。やはり十勝地方は冬はよく晴れているようです。

帯広の駅レンさんで車を借りて大成駅へ。ほんとうはこの駅と芽室駅の間のカーブで撮りたかったんですけど,除雪してなくて車を停められそうにないし,うっかりスタックすると大変なので駅撮りです。 

2552D('17.2.24 大成).jpg 後ろはキハ40 777。

2両目は旧首都圏色の777号。前後が逆だったらよかったのに.....。

さすがにもう5時近いし,これから山道を走るので早めに糠平へ向かいました。それほど雪は積もっていないとは言っても,所々強風で雪が道路に流れ込み,それが凍ってアイスバーンになっていますから,慎重に車を運転します。大成駅から糠平までは70kmほどで,1時間半ほどでした。 

今夜のお宿は糠平温泉郷のペンション森のふくろうさん。とても親切な奥さんが迎えてくださいました。部屋もとてもきれいで,食事も豆乳鍋や蠣の炊き込みご飯がとても美味でした。 

翌朝は9時集合で,タウシュベツへ行きます。昨年夏同様,ひがし大雪ガイドセンターのツアーに参加します。冬なので凍った湖面をかんじき履いて渡っていきますが,滑るのはもちろんのこと,春近くなると氷が割れたりしますし,陸地も温泉地帯なのでメタンガスが噴出して空洞になっている場合があるらしく,うっかりすると胸までズボッとはまってしまうことがあるので,単独行動は危険です。かんじきを無料で借りられますし,ツアーに参加する方が安全です。 

往復5kmの道のりをかんじき履いて凍った湖面を歩きます。こんなこと経験したことないので,素晴らしい経験でした。

国道からしばらく林の中を歩くと湖岸に出ます。はるか遠くにタウシュベツ橋梁が見えてきます。

タウシュベツ2s.jpg タウシュベツ橋梁を望む

キタキツネ.jpg キタキツネも出てきました。

なぜかキタキツネが1匹,我々の前に現れ,そのまま橋をくぐって湖面の方へ歩いて行きました。人間をちっとも恐れている感じじゃなかったです。

それにしても近くで見るとタウシュベツ橋梁は傷みがひどく,アーチも所々崩れかかっています。いつまでこの姿が拝めるかわかりませんが,美しい滅び行く橋を間近に見られてよかったです。

タウシュベツ4.jpg 

どういうわけか,なぜか廃墟に惹かれます.......。

さて,昼過ぎにツアーを終わって帯広へ。レンタカーの返却期限が4時半なので,早めに帰ります。

西帯広~大成間の直線区間へ。 貨物列車も撮影できました。

2070レ('17.2.25  西帯広~大成).jpg 2070レ 

Sおおぞら7号(大成~西帯広 '17.2.25).jpg スーパーおおぞら5号 

さて,本当は日中にレンタカーで稲士別駅へ行きたかったのですが,時刻表を見ると帯広発17:55の列車で行くと15分ほどで折り返し帰ってくることができます。すでに日は没していますけど,列車で行くことができるなら,そっちの方がよいと思いました。 

残念ながら,近くでは上厚内駅も廃止になりますが,池田の向こうの山の中の駅のため,あきらめました。ちょっと残念に思っています。 

函館~稲士別切符.jpg 目的地までの切符です

もちろん,脱線事故のため,払い戻しになっちゃいました。カード決済なので新千歳の駅で払い戻しを申し出たら親切な駅員さんが不使用証明をしてくださり,購入元のJRで払い戻ししました。 

稲士別駅.jpg 稲士別駅

稲士別駅は駅舎もなく,今回,同時に廃止になる函館本線の東山駅同様,単線の軌道にホームが1面あるだけの駅です。 

稲士別駅1.jpg 帯広駅方向を望む

今日の泊まりは帯広駅のプレミアホテルCABINさん。とてもきれいなレストランと露天風呂もついた温泉の大浴場がよかったです。  

翌朝は7:15発の十勝バス広尾行きに乗ります。さすがに広尾まで乗り通したのはiruchan1人でした.....。 

広尾駅.jpg 広尾駅に着きました。

広尾駅到着時刻.jpg 今も時刻の記載があります。

広尾駅は十勝バスの営業所として活用され,今も中は暖房の効いた待合室がありますし,広尾線の資料室も設けられていて,見学することができます。駅ホームも残っていて,信号設備も転換てこなどが残っています。ただ,レールは埋め立てられ,駐車場となっています。 

30年前,学生だったiruchanは日高本線との組み合わせで広尾線を乗りつぶそう,と思っていましたが,試験があって廃止までに行くことができませんでした。廃止は1987年2月2日のことですが,理科系の学生は3月まで試験がありましたからね......。

結局,日高本線も含めて,バスで乗りつぶし,と言うことになりました。 

広尾駅で休憩した後,10:00発のJR北海道バス日勝線に乗ります。襟裳岬までは1時間です。 結局,この間,ずっとiruchan1人でした......。

それにしても広尾駅って意外に海のすぐそばなんですね。時刻表の地図だと結構,内陸,という感じだったのですが,駅前を出てすぐに国道に出るともう海の横を走っていました。 

襟裳岬バス停.jpg 襟裳岬バス停

北海道でよく見かける休憩室つきのバス停です。もちろん,暖房などはないのですが,扉を閉めると結構暖かいです。

ここから襟裳岬を見学します。次のバスまで2時間半あります。平日だと次のバスは40分ほど早いのですが,今日は日曜なので休日ダイヤです。でもあっという間でした。 

襟裳岬1.jpg ごつごつした岩肌

ゼニガタアザラシの北海道有数の営巣地らしいですが,普段は一番▲の写真の岩が飛び飛びで海に並んでいるところにいるくらいらしく,この岩肌の海岸まで来ることは滅多にないそうです。

それにしても寒い!!! やはり風が強く,あとでアメダス見たらこの時間,気温は-1.8℃ですが,風は9.4m/sも吹いていたようです。

さて,先ほどのバス停でまたバスに乗って様似へ。襟裳岬のバス停から乗ったのはまたiruchan1人でしたが,途中で何人か乗降がありました。

様似駅.jpg 様似駅

     本当は列車で来たかったのですけどね......。 

様似駅駅名標.jpg

様似駅入場券.jpg様似駅入場券

観光記念入場券がありました。通常の硬券もセットで売られていて,いいお土産になりました。

様似~美々切符.jpg様似~美々切符

様似駅から各駅の切符が買えます。新千歳までの運賃も表示されていたので,窓口の女性に聞いてみると,美々までも売れます,と言うことで切符を買いました。驚いたことに手書きの補充券。どうも大変ありがとうございました。 

日高本線はiruchanは未乗でした。広尾線と一緒に乗りつぶそうと思っていたら広尾線が廃止になっちゃいましたし,折り返して帰ってくるのは大変だし,ということでなかなか乗りに行くことができませんでした。

そうかと思っていたら2年前の1月に厚賀~大狩部間で線路が高波で流失し,以後,鵡川以遠はバス代行となってしまいました。いまだに復旧のめどは立たず,それどころか,廃止という話も聞こえてくるので代行バスで乗りつぶしをすることにしました。

静内駅.jpg 静内駅

様似から15:50発の静内行き代行バスに乗ります。このまま,静内から乗り継げば苫小牧で泊まれますが,苫小牧は工業都市だし,途中の静内で泊まりました。結果は大正解。駅から少し歩いてエクリプスホテルに泊まりましたが,レストランがすごくよかったです。夜景がとてもきれいでしたし,朝は太平洋が望めて最高でした。夜はホエー豚のしゃぶしゃぶ,朝食のバイキングはシシャモやベーコンをその場であぶったものがいただけましたし,昼用に,と手作りの昆布と梅のおにぎりがいただけてとてもよかったです。 

静内駅構内.jpg 静内駅構内

入場券を買うと駅の中に入れます。広々とした構内がいいですね。札幌から直通のグルメ列車とか,観光列車を走らせれば結構,乗るのではないかと思いますけど。 今度,JR東日本の四季島が走り始めますけど,北海道にも来るようなので,接続して観光列車でも走らせられれば,と思いました。

静内駅にしやそば.jpg 構内のそば屋さん

静内駅そば.jpg わかめそば。ウマ~!!

残念ながら,もう列車は来ていないのですが,道南バスなどの交通の結節点になっているし,旅行会社の営業所もあったりして,意外に駅に人がいます。

驚いたのは駅そば屋さんがあること。

駅のそばが大好きなiruchanは事前に知っていたのでホテルの朝食を軽く摂ってここでわかめそばを食べてまた代行バスに乗りました。出汁の利いたおそばがとてもうまかったです。それに北海道は何でも量が少し多めなのもいいですが,このおそばも結構量が多くてよかったです。朝だというのに入れ替わり立ち替わりお客さんがきてそばを食べているのもなかなかよいと思いました。最近は,朝,営業してない駅そば屋さんも多いんですよね.....。

さて,最終日は静内発9:07のバスで鵡川へ。ようやく気動車に乗ることができます。

途中の厚賀から,窓の横から線路を眺めてみますが,それほどひどい被害のようには思えませんでした。実際,よく,新聞で見る,厚賀~大狩部間の線路流出部分はこれくらいなら復旧できるんじゃないの,と思えるくらいです。

ところが.......。

実際には被害状況はもっとひどく,盛土が流失している箇所はさらに長いようです。豊郷から北にもかなり長距離に渡って線路がないところがあったので,どうも変だと思ってネットで調べてみると,こちらの方は去年の台風被害のようです。復旧には双方あわせて60億円近い金額が必要なようですし,恒久対策をするとなるともっとかかるわけです。

路盤流失箇所.jpg 被災箇所(清畠付近)

線路が完全に中に浮いちゃってます。ほかのところは完全に線路ごと流されて完全な砂浜に戻ってしまっているところもありました。 

復旧には多額の費用がかかることからJR北海道は昨年,12月に社長が廃止を表明し,以後,地元との協議が続いています。この前日にも社長と地元自治体の町長と話し合いがもたれたようです。

いろいろ報道を見ると鵡川~様似間の廃止が提案されていますが,比較的被害の軽い,日高門別までの再開を望む声も上がっていますし,確かに門別町は大きな病院もあったりしてここまで再開できれば利便性は高いと思います。

いずれにしろ,様似駅まで列車が復活することはよほどのことがない限り,なさそうな風向きになってしまっています。

もともと,鉄道というのはJRで言えば,新幹線とか,山手線とかそういう黒字のところの儲けで赤字のローカル線を維持する,と言う構造的な問題がどの鉄道会社でもあるわけですから,そういう意味で国鉄の分割民営化が正しかったのか,というのは感じます。北海道だけで自立できるわけがない,と思うのですが....。

やはり,北海道の鉄道維持に向けては過疎化が進む中,地元が負担するのも限度があるでしょうし,国費の投入,すなわち鉄道設備の維持は国が行い,列車の運営だけ民間が行う,上下分離が必要だと思います。道路や空港は税金で維持しているのに,鉄道だけ民間が自前でやっている,というのは矛盾を感じます。

それに,今後,どんどん日本は人口が減り,鉄道の廃止は北海道だけの問題ではなく,日本全体の問題になっていきます。北海道は過疎化のため,顕在化が少し早いだけです。早急に,赤字ローカル線をどう維持するか,あらたな政策の検討が望まれます。  

鵡川からようやく日高本線のディーゼルカーに乗ることができました。

日高本線(鵡川).jpg 鵡川

鵡川駅にはたくさんのお客さんがこの列車を待っていました。代行バスは途中,何人か乗降がありましたけど,最高でも4人ほどでしたからガラガラでしたけど....。

やはり鉄道というものが大切だ,と言うことがよくわかります。鉄道を廃止して,路線バスに転換すると急激に利用者が減る,というのはよく見られる現象です。 おまけに,路線バスはずいぶん前から届出制になってしまい,廃止するにも届出1本で済んじゃうことになり,ずいぶんと廃止のハードルが低くなっています。鉄道の廃止によって公共交通機関の喪失につながるのは事実なので,iruchanは鉄道の廃止には反対です。早急に日高本線の復旧を望みます。 

さて,鵡川から予定どおり,11:28に苫小牧に到着しました。

またまたところが.....。

どうにも様子がおかしい。ホームに上り北斗8号が停まったままになっています。これは苫小牧発10:18なので1時間以上,停まっていることになります。

どうやらこの先,糸井駅で人身事故があったらしく,室蘭本線が運転見合わせになっているようです。駅の放送も,札幌方面は代行交通機関をご利用ください,と放送しています。あちゃ~~。

なんとか,苫小牧で折り返す普通列車は動いているようなので新千歳へ行くことができるようです。 そういえば,JR北海道は経営立て直しのため,札幌都市圏の普通列車も見直しとなり,以前は小樽~室蘭間で運転されていた普通列車は2013年のダイヤ改正からすべて苫小牧折り返しとなり,苫小牧~室蘭間は気動車による運転となっています。このため,なんとか新千歳へ行けそうです。

余談ですけど,そういえば,スーパーカムイの新千歳乗り入れもとうに取りやめになっていますね。だったら,最初からもっと編成を少なくできたはずだし,どうもJR北海道の施策はムダが多すぎる,という気がしますね。 

ついでに,新千歳空港まで線路を延ばしたのはいいけど,単線でホームも1面2線というのはどうかと思います。快速エアポートが着くとすぐに反対列車が出て行くので危ない,と言うのもありますけど,それほど線路に余裕がないんですね。それに地下というのもどうかと。これじゃディーゼルは入れませんからね。観光客向けに新千歳~ニセコなんて観光列車を走らせれば儲かると思うんですけど,新千歳空港駅には入れませんね。それに,そもそも地下だからエスカレータを使わないと発着ロビーにも行けませんしね。その点,中部空港はホームからロビーまでエスカレータや階段はなしですから素晴らしいです。もっとも,これが最近の国際空港のデフォルトなんですけどね。新しい香港国際空港もこうです。こういう風に考えて造っておけば,ホームも地上だし,ディーゼルも入れたのに,と思います。 ついでに,線路を美々くらいまで伸ばして千歳線に接続し,スーパー北斗が新千歳空港駅に寄ってもよかったんじゃないかと思います。ついでに,石勝線も新千歳空港へ伸ばして,南千歳~新千歳~追分で三角線を構成し,スーパーとかちなんかも乗り入れできるんじゃないでしょうか。

ちょっと脱線しちゃいました(本当にマジでつい昨日まで脱線してたんですけどね......)。 

12:00頃には運転再開となりましたが,特急すずらんやスーパー北斗などが数珠つなぎになっていて,どんどん,走って行きます。 

DF200(美々).jpg 

  DF200牽引貨物列車。残念ながら事故のため,何列車かわかりません(美々にて)

再び美々へ。切符は美々までですので。

ここで1時間ほど待っている間に多少,写真が撮れました。3日前は何も通過しませんでしたので.....。 

美々駅でまたピッとやって,電車に乗り,新千歳空港にはなんとか間に合いました。無事に飛行機に乗って帰途につきました。

ホッキごはん.jpg 新千歳空港の空弁

南千歳駅のほっきめしが気に入っちゃったiruchanはまた新千歳空港の空弁でホッキごはんを買って機内で食べました。これもおいしかった。北海道限定のとうきび茶もいつも飲んでますけど,少しクセがあるけど,なかなか美味です。

弁当食っていると,親切なスッチーの おばさん お姉さんがおしぼりを持ってきてくれました。最近,よく新幹線みたいに機内で弁当食べてます.......(^^;)。

無事に帰りの飛行場に着きました。

最後まで,ところが.....。

なんと,自宅に帰ってみたら,「おとーさん,よく帰ってきたね~。」と娘が言います。なんと,今,乗ってきたばかりの鉄道路線が人身事故で全線運転見合わせになっているとのこと。

あとで調べてみたら方向は逆でしたけど,さっき通過したばかりのすぐ近くの駅で,私が乗っていた電車が通過した20分ほど後に飛び込みがあったようです。

本当に最後まで,いろいろと大変な旅でした.......。 

 

2017年3月19日追記

庭の畑にじゃがいもを植えました。

今回,十勝地方を旅行したので,"十勝こがね" という品種を植えました。昨年の台風でじゃがいもを始め,農作物には多大な被害が出ています。この種芋は北海道産と書いてありました。少しでも応援になれば,と思いました。収穫が楽しみです。

十勝こがね.jpg 十勝こがねを植えました。

植えつけ状態.jpg うまく育つといいな~~。 

畝を作って,間に溝を掘り,20~30cm間隔で種芋を植えました。間に化成肥料を少し撒きました。 


コアレスモータ対応PWM式鉄道模型用コントローラの開発~その3・KATO KC-1改の試作~ [模型]

2017年2月17日の日記

前回でKATOのKC-1の解析を終えました。低周波と高周波の2周波数のPWM制御回路となっていて,また,鉄道模型用に安全な遮断タイプの保護回路を搭載しているのが特長です。高度なアナログ技術を投入し,設計した人は非常にアナログ回路に詳しい人だろうなと思わず脱帽しました。iruchanなんて足許にも及びません。

さて,KATOのKC-1は原設計は20年ほど前だと思いますが,現在はspiceなどの回路シミュレータもありますので,新たに現代風に改良したものを開発したいと思います。

大変おこがましいですが,新たに改良する点としては,

☆ 低周波の最大デューティは100%とする

KATOのKC-1はPWM波生成にNECのμPC494Cというスイッチング電源用ICを使っています。モータ制御などの純粋なPWM波制御回路だと最大デューティは100%となるようにしたいところですが,μPC494Cは本来,スイッチング電源用のため,デッドタイムが設けられていて,最大でも95%にしかなりません。 iruchanはデューティ100%にしたいので,その点,改良したいと思います。なお,μPC494Cはまだ入手可能ですが,意外に部品屋さんを探すとないので,テキサスの現行品TL494を使いました。と言うよりこちらがオリジナルなんですけどね......(^^;)。 

☆ 高周波側の最大デューティを10%程度にする

KATOの原設計では高周波側の最大デューティはほぼ100%であり,本来は調光用なので,こんなに最大デューティは大きくなくてもよく,10%程度でよいと思われます。100%にしちゃうと調光用のパルスだけで模型が走行しちゃいますので。もともと,KATOのKC-1は調光用の高周波パルスのデューティを決めるボリウムは半固定になっているんですが,半固定抵抗というのはあくまでも調整用なので0~100%まで変化するような使い方をしないのが普通です。

☆ 電流遮断式保護回路を採用する

出力ショート時に保護回路が働いて,出力の電圧を完全に0Vにします。従来,安定化電源などの保護回路には電流制限型の保護回路が用いられていて,iruchanも長年使っていますが,これだと最大の電流がいつまでも流れます。安全のため,KC-1同様,完全に電流を遮断する回路とします。

ただ,KATOの回路はサイリスタを使った非常に複雑な回路のため,従来の抵抗とTrによる検出回路とフリップフロップを用いた簡素な回路としたいと思います。

もっとも,これでも回路が複雑なので,従来通り電流制限型やポリスイッチでよい,と言う方は最後に回路を示しますので,そちらをご採用ください。 

☆MOS-FETを用いた主回路にする

KC-1はサイリスタを用いた保護回路を使っていますが,そのせいか,出力段はPNP Trを使った回路になっています。また,高周波と低周波で別々の出力段を持っていて,普通の電車でいうと主回路? の部分はかなり複雑な回路です。

今回,MOS-FETを用いて簡単な主回路とします。MOS-FETは損失が小さく,高周波特性もバイポーラTrより数段よいので最近はMOS-FETを使うことが多いと思います。また,出力段も高周波,低周波共用とします。

最後に,

☆ 電源内蔵式にする

KATOのKC-1は電源ユニットKM-1とのセットで売られていました。当時はまだACアダプタやスイッチング電源が一般的ではなかった時代なので仕方ないのですが,別付けの電源は不便だし,KM-1はトランス仕様なので重いです。おそらく,KM-1はポイント用の交流出力も備えていたので,トランス式にせざるを得なかったのでしょう。スイッチング電源は交流出力が苦手で,ポイント用にスイッチング電源を使って直流で使用するには新たな回路が必要となります。

ただ,トランスを使った非安定化電源は出力電圧が負荷により一定ではないので注意が必要です。よく,パワーパックで最大電圧15Vとか書いたものがありますが,これはトランス式のためです。さすがにNゲージで15Vは危険です。KATOのKC-1も専用の電源装置KM-1が販売されていましたが,容量は15V,2Aです。ただ,15Vがもろに出てくるわけではなく,制御TrのVCEsatや保護回路の検出抵抗による電圧降下がありますので,実際に出力されている電圧は13Vくらいのようです。

iruchanはスイッチング電源は嫌いなのですが,やはり軽くて,しかもフィードバック機能もあって出力が一定電圧になる安定化電源の機能もありますので,スイッチング電源仕様としたいと思います。 

☆ 

と言う次第で,前回,spiceでシミュレーションして設計を終えましたが,プリント基板を作る前に若干,修正しました。

困ったことにプリント基板用の可変抵抗が10kΩ以上のものしか手に入らない,と言うことがわかりました。KATOの原設計だと1kΩや2kΩが使われていて,iruchanも最初,spiceでのシミュレーションにこういう値のVRを使っていましたが,いざ,プリント基板を作ろうと部品を集め出したらこのことに気づきました。

と言う次第で,可変抵抗は10kΩで再度,設計し直しました。もちろん,プリント基板用じゃなくて普通のパネル取付用の可変抵抗を使えば,1kΩや2kΩなんて簡単に手に入るのですけどね.......。

でも,パワーパックを自作した人ならおわかりになると思いますが,可変抵抗の配線が非常にめんどくさいんですよね。おまけに調整中にハンダづけをしたところで電線が切れたり,イライラするのでいつもiruchanはプリント基板用を使って,プリント基板に一緒にボリウムも載せちゃうことにしています。

と言う次第で,設計を終えた回路を▼に示します。まだ改良点があると思いますので,動作確認はしましたが,現時点での回路図ということでお願いします。

KATO KC-1 mod 回路2.jpgクリックすると拡大します 

プリント基板は33mm×70mmという大きさです。昔から何でも小さいものが好きという性格のため,相変わらず小さく作り過ぎちゃうのが困ったものですけど,非常にコンパクトにできました。

プリント基板.jpg 完成した基板

プリント基板2.jpg 部品配置

さて,とりあえずプリント基板ができたら十分チェックしてから通電します。

調光用とモータ用のボリウムを回して出力モニター用に設けたLEDの明るさが変化すれば成功です。調光用のボリウムは最大デューティが10%くらいなので,それほど明るくはならないはずですが,最近のLEDは非常に輝度が高いのでこれくらいのデューティでも明るく点灯すると思います。

さっそく,うまくいったらオシロで波形を確認してみます。

高周波パルス+低周波パルス.jpg 低周波+高周波混合パルス

通常使用時はこのように低周波のパルスの隙間に高周波のパルスが出ます。 高周波(調光用)のボリウムを左に回すと高周波パルスが停止し,低周波のパルスのみとなります。周波数は58Hzでした。ちなみに高周波は21kHzでした。

低周波パルス.jpg 低周波のみのとき 

低周波はOKで,ちゃんと0%から100%までスムーズにデューティが変化します。ギリギリ100%になっていませんが,波形を見る限り,ほぼ100%と言ってもよいと思います。 

低周波パルス(100%).jpg ほぼ100%となります。

KATOのオリジナルのKC-1は最大デューティは90~95%くらいですが,本機はほぼ100%となります......(^^;)/

ところが......。 う~~ん,予想してはいたんですけど......。

高周波パルス(ドライバなし).jpg 高周波パルスはこんなに太いです。 

調光用の高周波パルスが予想より太く,最低デューティは25%くらいです。設計値としては最大で10%だったので,こんなに太くなるはずはありません。もっと細くできるはずなんですけどね.....。 

原因は出力(終段)のMOS-FETの入力容量です。使用した2SK2412は最近のMOS-FETではなく,20年ほど前の開発なので入力容量は小さめですが,それでも860pFもあります。最近のものだと2000pFを超えるものもが多いので,もっと悪くなります。

MOS-FETをスイッチング回路に使用した場合,この入力容量が邪魔をしてなかなかonにならないし,いったん,onになったあと,今度はoffにするのに時間がかかっちゃいます。つまり,ゲートしきい値電圧VGS_thに達するまで充電するのに時間がかかるし,onになったあと,今度はゲートに溜まった電荷を逃がさないとなかなかゲート電位が下がらないのでoffになりません。

これじゃ,いくらMOS-FETがスイッチング速度が速いといっても,意味ないんですけど....。

むしろ,バイポーラTrはスイッチング速度がMOS-FETより遅いんですが,入力容量が非常に小さいのでこのような問題は生じません。そもそもベースに電流を流して制御する素子なので,電荷が逃げるのも速いんですね。また,同じ電圧制御素子である真空管はグリッドとカソードが離れているし,入力容量は小さいのでこの問題は高周波のときだけで,低周波だと気にしなくてもよいです。だからiruchanはアンプ作るときはバイポーラか真空管なんですよね......(^^;)。

そういうわけで,MOS-FETは電圧制御素子なので電圧だけでいいや,と考えて設計してはいけません。

やはりバイポーラTr同様,電流を流してドライブするように設計する必要があります。だから,今をさかのぼること40年前,日立が最初のオーディオ用MOS-FET2SJ49K134などのシリーズを発表したとき,ドライバ段を省いて電圧増幅段に直結する回路がよく使われましたけど,やはりバイポーラ同様,プッシュプルのエミッタフォロアを入れてドライブした方がよいと思います。

と言う次第で,今回のドライブ回路をどうするか考えて結局,PNPトランジスタによるエミッタフォロアを入れました。本当だとPNP-NPNのコンプリメンタリによるプッシュプルエミッタフォロアにしたいんですけど,さすがに大げさですからね。 

最近はPICやAVR,ArduinoなどのマイコンでMOS-FETをドライブしてモータを制御することが多いと思います。この場合,マイコンとMOS-FETのゲートを直結するだけで普通はOKなんですが,MOS-FETの入力容量のせいであまり低いデューティにできません。携帯電話やラジコンなど,それほど低速を必要としないモータ制御の場合はこれでもよいのだと思いますが,鉄道模型の場合はデューティが10%以下の部分が重要ですから,下記の配慮が必要だと思います。

実は,ここまで研究してきて,コアレスモータを使用している模型がうまく運転できないのはひとつはこのせいではないかと思っています。コントローラの最低出力デューティが10%くらいになっていて,コントローラからパルスが出力された時点ですでにデューティが大きすぎ,前照灯が点灯すると同時に模型が走り出してしまうのではないかと思います。

もちろん,こういう場合についてはすでに研究されていて,本などに▼のようなドライブ回路が載っています。

MOS-FETによるスイッチングに際して,出力されたパルスの幅が広い場合,コンプリメンタリのTrを▼のように接続すると高速でドライブできるので非常に狭いパルスを出力することができます。 C-MOSのロジックICには出力がこのようになっているものがあります。もちろん,その場合は出力はP ch.とN ch.のMOS-FETのコンプリですけどね。 

マイコン出力回路.jpg プッシュプルドライブ回路 

もっとも,プッシュプルにするのは面倒なので,上側のNPN TrをスイッチングDiで代用することが多いです。今回,この回路を採用させていただきました。実際,今回使用したTL494は出力にNPN Trを持っていて,エミッタから出力を取っているので,上側のNPN Trはもとから不要です。 

マイコン出力回路1.jpg 変形版です。

なお,蛇足ですが,この回路の出力電圧はマイコンのほぼ出力電圧そのものとなり,増幅作用はありません。最近のマイコンは3V出力のものが多いので,MOS-FETがonしないことがあります。その場合はプッシュプルドライブか,別のドライブ回路が必要となります。  

では,以上のドライブ回路を挿入してシミュレーションしてみます。さすがに低周波側のパルスにはドライバを入れませんでした。 20msもパルス幅があるのに,数μsの応答時間は問題になりませんので。やはり問題は高周波のパルスです。

KATO KC-1 mod. driver simulation.jpg 最終シミュレーション回路 

ドライブ回路なし(MOS-FET).jpg 

     終段MOS-FET(ドライブ回路なし)のとき

ドライブ回路なし(BPT).jpg 

     終段がバイポーラ(ドライブ回路なし)のとき

終段の制御TrをダーリントンTrにしたときです。バイポーラトランジスタなので,ベースに電流を流して使用しますし,入力容量はごく小さいのでパルス幅はかなり狭くなります。ただ,MOS-FETに比べれば狭いですけど,まだ少し幅が広く, やはりドライバが必要な感じです。

と言う次第で,ゲートドライブ用にもう1個,Trを追加してドライバを挿入すると, 

ドライブ回路あり.jpg 

     ドライブ回路あり(終段MOS-FET)

ドライブ回路あり(拡大).jpg 波形の拡大

高周波パルスoffと同時にQ5の2SA1020がonし,終段のMOS-FETのゲートに蓄積された電荷を放出していることがわかります。

出力の高周波パルスもほぼTL494の出力と同じくらいの幅になることもわかりますね。

2SA1020によるドライバ回路を挿入して最低デューティは1%以下となりました。 本当は2SA1015にしたかったのですが,若干,コレクタ電流が大きくて少し発熱したのでひとつ大きめのTrにしました。

高周波パルス(ドライバあり).jpg 高周波パルスの最小デューティです。

思い切りオーバーシュートしてますけどね.....。MOS-FETなのでスイッチングが高速なためです。 

☆ 

【保護回路について】

なお,今回,保護回路は電流遮断式として,過電流を検知したら完全に出力電流を0とする回路としました。こちらの方がはるかに安全です。通常の電流制限型の回路はショートした場合でも設定した値の電流を流し続けますので,放置すると危険です。

一方,このせいでリセットボタンを押さない限り,再度,電流が出力されませんのでご注意ください。まあ,実物の電車も又入れスイッチを押さない限り,再起動しないんで同じですけどね。

iruchanもいつかはこういう安全な回路を設計したいと思っていましたが,R-Sフリップフロップを使ったらずいぶん簡単にできました。

R-Sフリップフロップはセット(S)信号が入ると出力がhighとなり,以後,いくらS信号が入ってもlowとはなりません。一方,リセット(R) 信号で解除できます。以後,同様にR信号が入ってもセットされません。最初に入った信号を保持できるので,メモリ回路として使用されるのはご存じの通りです。

     _  
出力はQとQの2つがありますが,これらは常に反対の動作をするので,今回,利用するのはQ出力のみです。

R-Sフリップフロップはメモリのほか,実際の応用としてよく使われるのはチャタリング防止です。

プッシュボタンやリレーなど,機械的な接点は必ず接点がバウンドし,多数のパルスを生じます。これをチャタリングと言いますが,これをデジタル回路につかうといくつものビットが発生してしまうため,これを防ぐため,R-Sフリップフロップが使われます。一度,onになっちゃうとずっとonのまま,と言う風にできますので。

ただ,実際にチャタリング防止は今はシュミットトリガを使うことが多いですし,そもそもこういう機械的なスイッチを使うようなICは入力にこういう回路を持っているのが普通で,R-Sフリップフロップを使うことはほとんどありません。

それに,74シリーズなどTTLのICではTフリップフロップやDフリップフロップ,J-Kフリップフロップはあるのに,R-Sフリップフロップだけありません。 

....と,iruchanはずっと思っていました。実際,iruchanが電子回路に興味を持って勉強し始めた中学生の頃,本にもそう書いてありました。

ところが,今探してみるとあるんですね~~~!!

74LS279がそれですので,あまり売っていませんが,見つけたら買っておかれるとよいと思います。また,C-MOSだと今回使用した,CD4043がそれです。もとからC-MOSはR-SフリップフロップのICがあったようです。

でも,どちらもやはり入手は意外に難しいようで,昔,iruchanが勉強したように,入手できない場合はNORゲートを使って自分で作るのがよいと思います。

でも......,実はR-Sフリップフロップは2種類あって,NANDでも作れちゃうのです。本も書いてあるのが2種類あるようで,どっちが正しいんだ!? って思っておられる方も多いかと思います。

実は,正論理のR-SフリップフロップがNORゲートで,負論理版がNANDなのです。

どういうことかというと,セットSがhighのとき,出力QがhighになるのがNORで,逆にSがlowになったとき,QがhighになるのがNANDです。

普通,highを1と考えるのが正論理で,この場合のR-SフリップフロップがNORです。反対にhighを0と考えるとNOR版というわけです。 

  R-Sフリップフロップ.jpg R-Sフリップフロップ1.jpg

別に働きとしてはどちらも同じですが,本機では2SA1015が過電流を検知するとSがhighになるように設計しましたので,使用するのはNOR版です。

もし,CD4043が入手できない場合,CD4001を使って上図のように配線すると正論理版のR-Sフリップフロップが作れますので,ご利用ください。

ちなみにC-MOSは負論理版のR-Sフリップフロップがあり,型番はCD4044です。TTLには負論理版はありません。

                               _  _

本当いうと,これは区別しないといけないし,親切な本には負論理版はR - Sフリップフロップと書いていますが,半導体メーカの規格表を見るとテキサスや東芝の規格表には "Quad R-S latches" などと書いてあり,R-Sフリップフロップと同じ表現です。

なお,やはりR-Sフリップフロップを使った回路を使用したくない,と言う方は従来どおり,ポリヒューズを使う回路をおすすめします。

Littel FuseのRXEF050がいいかと思います。あれ,レイケムじゃなかったの? と思ったら昨年3月に買収されちゃったようです......orz。

トリップ電流が1Aで,保持電流が0.5Aというものです。0.5~1Aの間のどこかでトリップし,以後,0.5Aをずっと流し続ける,と解釈してください。それに,トリップする電流は必ずしもこの間とは限りません。室温が低いと2~3Aくらい流さないと飛ばないこともあります。このあたり,どうもポリヒューズって信用できないんですよね。うっかり,IC=2AというTrを使うとポリヒューズが動作する前にTrが飛んじゃいます。そういうわけなので,今回,使用するTrやFETはICなりIDが3~5A以上のものを使ってください。今回使った2SK2412はID=20Aなので余裕ですけど。

PWM式LED調光器回路MOS-FET出力回路2.jpg MOS-FET使用時

なお,出力の制御素子はダーリントンTrであれば置き換え可能です。iruchanはバイポーラTrが好きなので,いずれ2SD560(なつかし~~!)なんかに交換したいと思います。

RSはパルスoff時にゲートの電位が0Vとなるようにするものです。なくてもいいのですが,ゲートに溜まった電荷を逃がす経路が必要ですので,入れておいた方がよいです。

RGは寄生発振防止用です。MOS-FETは高入力インピーダンスなので数MHzのオーダーで発振することがあります。その対策用です。オーディオのアンプの場合,必ず入れますが,パワーパックの場合はなくてもOKです。

ダーリントンTr出力回路.jpgダーリントンTr使用時

MOS-FETが高価で,品種も少なかった頃はダーリントンTrが使われていました。今じゃ,MOS-FETの方が安いくらいなので,出番が少なくなってしまいました。

ただ,▲にも書きましたとおり,ダーリントンTrの場合は1W以上の損失が発生しますから,放熱器が必要です。 MOS-FETだと1/10以下になるので放熱器は不要ですが,最大出力を2Aなどとする場合はMOS-FETでも放熱器をつけてください。また,ベース抵抗RBはTrの場合は必ず必要ですので,忘れずに入れてください。

そのほか,フリーホイーリングDiは今回のように高周波でスイッチングする場合,普通のシリコンDiではダメで,高速でスイッチング可能なショットキータイプが必要です。 

蛇足ですけど,フリーホイーリングDiと言うのが正しく,フライホイールDiというのは間違いです。米電気学会IEEEでもFree Wheeling Diodeと書いてあります。といって,規格表に思いっきりフライホイールDiと書いているメーカーさんが多いのですけどね.....(^^;)。

☆ 

さて,いよいよバラックの状態で試運転してみます。電源は簡単に9VのACアダプタを使用しました。

KATO D51ギースルエジェクタ.jpg KATO D51ギースル機

まずは調光用の高周波のボリウムを少し回転させ,前照灯や出力のモニター用LEDが点灯するくらいで止めておきます。回しすぎるとやはり機関車が走行しちゃいます。

次に,走行用の低周波ボリウムを回すと,機関車が走り始めます。やはり,予想どおり,モータのうなりは少なく,かすかにジ,ジーッと音がするくらいです。300Hzだと盛大にプーッという音を出しますが,低周波の方がよいようです。また,本機は高周波のパルスを出力するのでモータには循環電流が流れてモータの電流は途切れないのでうなりは少ないはずです。

さて,走行テストをしてみます。

まずは作った本人が驚いちゃいました......(^^;)。

     [晴れ][晴れ][晴れ] 驚くほど スロー で動きます [晴れ][晴れ][晴れ]

実測してみると,1周3.24mのエンドレスを123秒かかって一周しました。計算すると,2.6cm/sと言うことですね!

とはいえ,もちろんこれはやはりKATOのコアレスモータの性能によるところが大きいと思います。比較のため,先日購入したKATOのEF70で試験してみるとやはり低速が倍くらいで,一周するのに63秒,5.1cm/sでした。やはりコアレスモータ恐るべし!!! 

しかし,実際,非常に遅いです。普通のコントローラではこんな低速では走らないと思います。iruchan現用のTomix 5001PWM改造コントローラではこんなスピードでは走りません。

また,最初の目的である,常点灯への対応についてですが,非常にクリティカルですけど,調光用ボリウムを走行しないギリギリに設定すれば,走行用のボリウムを回転させて,機関車が起動するまでの "遊び" を確保することできて,無事に常点灯に対応しました。

KATO D51ギースルエジェクタ1.jpg ちゃんと常点灯にも対応します。

▲のD51や▼のEF70は停止中の状況です。走行用のボリウムを左に絞って機関車が停止しても前照灯がついたまま,という状況を実現できるのはちょっと感動しちゃいました。 

それに,若干,高周波パルスのせいで,停止するときにすこし走行距離が伸びます。若干,惰行しているような感じがするのもいい感じです。もっとも,高周波パルスのデューティが大きすぎるとそのまま走行してしまって某JRが天王寺駅に突っ込んだり,某私鉄が新岐阜駅に突っ込んだりしたような事故を起こしますのでご注意ください.....。 

KATO EF70-1.jpg EF70もOKです。

次回はちゃんとケースに入れて最終調整したいと思います。また,残念ながら保護回路がやはり頻繁に誤動作するので,対策を検討したいと思います。 


コアレスモータ対応PWM式鉄道模型用コントローラの開発~その2・KATO KC-1の研究~ [模型]

2017年2月8日の日記

前回,コアレスモータを使った鉄道模型のコントローラとして,PFMまたは2周波PWM式コントローラがよいのではないかと推測しました。

PFMはパルス周波数変調(pulse frequency modulation)の略で,すでにスイッチング電源のコントローラで高効率化のため使用されています。 パルス幅を固定とし,off期間を可変してモータの速度を可変するものです。

回路をハードウェアで実現するのはちょっと難しそうなのでこちらは後回しです。PICを使えば簡単,と言う気もするんですけどね。

一方,自作した201系用のPWM式コントローラTomixの5001パワーユニットを改造したPWM式コントローラは出力のパルスの周波数を201系同様の300Hzにできますが,これで運転すると常点灯に対応することがわかりましたので,低周波のPWMがよいのでは,と推測できました。

ただ,これは要注意で,まず,かなりの騒音を発します。モータの電流がパルスごとに途切れ,モータがステッピングモータみたいに起動と停止を繰り返している状態です。次に,PWMは前回書きましたが,低周波ほど損失が増え,モータが発熱することが予想されます。

これを解決するため,モータ用の低周波PWM波と前照灯&室内灯制御用の高周波のPWM波を組み合わせることを考えました。

もちろん,これはiruchanのアイデアではなく,すでに過去,KATOがこのようなコントローラを発売していました。KC-1がそれですね。

KC-1は低周波に50Hz,高周波に20kHzの発振器を用い,それぞれを出力で合成して模型用のコントローラとして使っています。低周波のパルスの隙間に高周波のパルスが出ていて,これが前照灯を制御するようになっています。

今でもKC-1は低速が効くコントローラとして人気があり,某掲示板などでも評価が高いですし,Yahoo!でも結構高価で落札されます。

iruchanはコントローラは自作するので,メーカ製のコントローラを買うことはないんですけど,このコントローラは昔から気になっていました。

KC-1がいつ製造中止になったのか,わかりませんが,もう10年以上前だと思います。PWM波生成にはスイッチング電源用の制御ICである,NECのμPC494Cが使われています。

μPC494Cの規格表がネットに出ているので見てみますと,NECのものとルネサスのものがあり, NECのは1987年版で,ルネサスのは2007年版となっています。おそらく,1987年頃に製造が始まり,ルネサスのはすでに新規採用非推奨となっているので,その頃には製造中止になったものと思います。

と言う次第で,μPC494Cを使って作りたいのですが,秋葉などでまだ手に入るんですけど,製造中止から10年くらい経っているようですので,入手が難しくなりつつあり,結構探さないといけません。でも,そもそもμPC494CはNECがオリジナルではなく,テキサスのTL494のセカンドソースなのですから,オリジナルのTL494を使えばいいんですね。

μPC494C, TL494IN.jpg NECのμPC494CとテキサスTL494 

何のことはない,秋月電子でTL494INがたった50円でした。なぜか,もう1種類販売されていて,TL494CNだと60円です。何が違うの?,と思ったら使用温度で,INが-40℃~85℃なのに対し, CNが0℃~70℃です。これならINの方が高くてもおかしくないんですけどね~。

おそらく,製造工程はどちらも同じで,INの方は選別品だと思います。手間がかかっている分,本来はINの方がはるかに高いはずなんですけど,意外に秋葉などの部品屋さんではこういうことがあります。新日本無線のOPアンプNJM4580も低雑音の選別品NJM4580DDの方が安かったりしますね。

と言うことで,iruchanは-40℃から使えるTL494INを買いました。まさか,厳寒の朱鞠内湖で野外鉄道模型運転会なんてする気はないんですけどね.......(^^;)。 

それにしても,日本のメーカは需要がなくなるとさっさと製造中止しちゃうので昔から非常に困ったものなんですが,米国の半導体メーカはこういう古いICでも製造してくれるので助かります。今どき,DIPのICというのも貴重ですしね。TL494もテキサスのホームページを見るとステータスが "ACTIVE" となっていて,今も製造中のようです。米国だと軍とか宇宙用とかで今も何か需要があるのでしょうか....。

さて,TL494は中のブロック図を見ると,iruchanが今まで作ってきた,PWM式コントローラと同じで,三角波の発振器とコンパレータの組み合わせとなっています。もっとも,TL494の場合は三角波じゃなくて,鋸歯状波ですけどね。そのほか,デッドタイムコントローラがついていたり,出力段が2組あるのが特徴です。CTとRTの端子に接続したCとRで発振周波数が決まります。発振周波数 fs は 1/C・R です。

TL494 block diagram.jpg TL494内部ブロック図 

今ではもっと新しい,スイッチング電源用のPWMコントローラICもあるのですが,TL494がいいのは低い周波数のスイッチングができること。▼のグラフでは10Hzまで表示されています。ほかのICだと縦軸の単位はkHzです。

TL494 switching frequency.jpg TL494のスイッチング周波数

と言うことはTL494だとKATOのKC-1みたいに50Hz近辺で発振させることも可能だと思います。

と言う次第で,組み立てていきます,と行きたいところですが,いきなり組み立ててもうまく動作するかどうかわかりませんので,事前にSpiceで動作を確認しておきたいと思います。

iruchanが使っているLTspiceはリニア・テクノロジー社のICしかないのでTL494のモデルは苦労しそうですが,幸い,ネットを探すとSpiceモデルがありましたので,活用させていただきます。残念ながらシンボルファイルがおかしくて,ピン配置がでたらめだったので,シンボルファイルを編集して正規のDIP版のTL494と同じに修正しました。

これさえあれば百人力ですね!! さっそくシミュレーションしてみます。オリジナルの回路についてはいわたさんがブログで報告しておられますので,参考にさせていただきました。どうもありがとうございました。

KATO KC-1 original simulation circuit.jpgKC-1オリジナルシミュレーション回路 

うまくシミュレーションも動作しました!

出力波形はこんなで,低周波のパルスとその隙間に高周波のパルスが出ています。となっている部分は高周波パルス部分です。

それに,KC-1はTL494のソフトスタート機能を使っているようで,低周波のパルスは徐々にデューティが上がっていくのがわかります。スイッチング電源は立ち上がりから大きなデューティで動作すると誤動作することがあるので,ゆっくり起動するようになっています。

KATO KC-1 original 波形.jpg t=0sec.からの状態

低周波のパルスはこのように,最初,狭くはじまって徐々に設定値に落ち着いていくようになっています。 

KATO KC-1 original 波形拡大.jpg 波形の拡大です。

波形を拡大するとこういう感じで,24kHzのパルスが48Hzの低周波パルスの隙間を埋めている感じです。

なお,この高周波パルスと低周波パルスの間には電圧差があり,大体,1V程度,高周波パルスの方が高いようです。実物も同じ状況のようです。まあ,これはたいした問題じゃなく,おそらく過電流検出用の抵抗など,回路の違いによるものです。

また,KC-1は低周波パルスの最大デューティは95%くらいです。100%にはならない,と言うのが特徴です。これはKATOの原設計が発振電圧(CT)を,基準電圧であるデッドタイムコントロール(DTC)と比較してPWM波を作っているためで,テキサスの規格表を見るとわかるとおり,CTには0.1Vの "げた" が履かせてあり,DTCは決してCTより大きくならないようになっているからです。こうやってコンパレータのoff期間が最低でも5%くらいになるようしてあります。このため,KC-1では最大デューティは95%くらいです。この理由はスイッチング電源だと出力段の2つのNPN Tr を同時に使ってプッシュプル動作をさせることがあるのですが, これらが同時にonすると電源をショートして過大電流が流れるため,一瞬,offにするようになっているためです。このDTCはテキサスの規格表を見ると5~100%の間で設定できるようです。

iruchanはパワーパックなら最大デューティ100%としたいと思うので,自作する際には改良するつもりです。Tomixの5001パワーユニットをPWM化するときも最初の設計では100%にならず,結構苦労しましたので。

実際,シミュレーションでも最大デューティは約90%となりました。の線がDTCの端子電圧で,の線が発振器の出力(CT)です。これをコンパレータで比較してCT>DTCの間だけ,出力にパルスが出るようになっています。

このようなスイッチング電源用ICを使ってPWM波を作る場合,普通はDTCではなく,FB端子を使うはずですが,何らかの理由があったのかもしれません。 

KATO KC-1 duty max.jpg KC-1の最大デューティ

また,▼のモータの電流波形を見てみると,予想どおり,低周波のデューティが低い状態でも0にならず,連続して流れています。これでKC-1はモータが唸らない,という特長がありますが,その理由がわかりました。 

KATO KC-1 iruchan mod. 波形拡大.jpg 拡大波形 

     ☆    ☆    ☆ 

さて,次はiruchanバージョンを作っていきたいと思います。

仕様としては,低周波のデューティは0~100%,高周波のデューティは0~5%くらいとしたいと思います。もちろん,最大出力電圧は12Vにしますので,電源は安定化電源とします。といって,今どきトランスを使った安定化電源だと重いので,スイッチング電源を使います。

また,KATOのKC-1は非常に凝った過電流保護回路がついています。過電流が流れると自動的に電流を遮断し,ALARMのLEDが点灯するようになっています。

簡単に実現するにはブレーカを使うことですけど,これは高いし,応答速度も遅いのでうっかりすると制御Trを飛ばしてしまうので,純粋に電子式にしたいと思います。

でも,これは意外に難問なんです。 

よく,安定化電源などの保護回路に使われるのは電流制限型と呼ばれるもので,Tr1石と抵抗を1本使うものです。iruchanもいつも使っているタイプです。

電流制限型保護回路.jpg 電流制限型保護回路

これは,抵抗Rの両端に生じる電圧が0.6Vを超えるとQ2がonし,Q1のベース~エミッタ間電圧VBEを小さくするので,電流を絞ることができます。

非常に高速で応答するので,制御Trが飛ぶのを防ぐことができます。そのため,安定化電源では必須の回路で,iruchanもいつも挿入しています。

ただ,この方法の問題点は,確かに設定された電流値以上の電流は流れないようになっているのですが,ショートしても設定された値の電流がずっと流れ続ける,と言うことにあります。たとえば,imax を1Aと設定したとすると,ずっと1Aの電流を流し続けてしまいます。

Nゲージの模型に1Aも流し続けるとモータが発熱し,ボディが変形してしまうことが考えられます。もちろん,短時間なら問題ないし,我々マニアは機関車が停止したらすぐにボリウムを絞るクセが身についているので大丈夫だと思いますが,長時間,過電流保護回路が動作した状態でフルノッチにしておかないことが肝要です。

定電圧電源でこのようなことを防ぐために考案されたのがホールドバック型保護回路で,過電流を検出すると自動的に電流を絞ってくれます。グラフがカタカナの "フ" に似ているのでフの字型保護回路とも言います。

ホールドバック型保護回路.jpg ホールドバック型保護回路

これだと安心で,実際,金田式DCアンプのシリーズレギュレータなどに使用されていました。

ただ,この回路の問題は抵抗が3つあり,それぞれ計算して決めますが,Nゲージのパワーパックなんで最大電流 imax を1A,最小電流 imin を0.1Aくらいにしたいのですが, このとき,3つの抵抗値を決めることができません。解がないんですね。どれか,抵抗が負になっちゃいます。

ということでこの回路をNゲージのコントローラに使うことはできません。 

そのほか,最近はポリヒューズ(ポリスイッチとか,PTCサーミスタの名称があります) を使う人が多いと思います。単に負荷に直列に挿入するだけだし,セラミックコンデンサみたいに小さな部品なので実装上も簡単です。

ただ,これもヒューズの名前があるくせに電流を遮断してくれるわけじゃないのが問題で,▲の電流制限型同様,トリップ電流以上の電流が流れない,と言うだけの素子ですし,その上,トリップ電流を上回ったら直ちにトリップするものじゃなく,実際にトリップするまでに電流差と時間差があり,実際に動作する電流はもっと大きいですし,時間的にも高速で電流制限してくれるものではありません。それにしばらくすると勝手に復帰しちゃってまた過電流が流れる,と言う問題があります。 

ということで,いったん過電流を検知したら回路をしゃ断して,完全に電流が0になるようにする回路,というのは結構難しいのです。

そこで,KATOのKC-1はサイリスタを使った凝った回路になっていて,過電流を検知するとリセットボタンを押さない限り,電流が二度と流れないようになっています。

本来,鉄道模型の過電流制限にはこういう回路が必要だと思いますので,今回,取り組んでみます。

しかし,KATOの原設計の回路は非常に複雑だし,いまどきサイリスタを使うのもなんだよな~という気がするので,もっと簡単な回路にしたいと思います。

今回,▲の電流制限型回路に使われているのと同様,抵抗で電流を検知して,R-Sフリップフロップでその状態を保持するようにしました。 過電流が流れるとQ3がonし,R-Sフリップフロップをセットして,そのQ出力が high となります。こうなるとQ2がonしますので,制御FET Q1のゲート電位をほぼ0にして制御FETがカットオフします。リセットするにはR-Sフリップフロップのリセット端子を high にすればよいのです。ちょっと複雑に見えますけど,かなり簡単な回路だと思います。

と言う次第で,出力部の回路は次の通りとしました。

R-Sフリップフロップ過電流保護回路3.jpg  出力部および保護回路 

KATOのKC-1の回路では出力段はPNP Trを使っていて,出力もエミッタから取っていますが,今回,もっと一般的なNチャンネルのMOS-FETを使うことにし,出力もドレインから取ることにします。マイコンを使った回路ではこちらの方が便利ですし,最近のパワーパックはこのようになっていると思います。iruchanも前回作った,LEDライトの調光器で採用しました。MOS-FETを使うと非常に高速だし,何より損失が小さく,放熱器が不要となることも期待できそうです。

なお,CD4043のS入力にパラに入っているコンデンサ(0.1μF程度)はノイズによる誤動作防止用です。これがないと頻繁に誤動作しますし,リセットもできなくなりますのでご注意ください。特に,電源投入直後に保護回路が動作して,起動するたびにリセットSWを押さなきゃいけない,というコントローラはこのノイズ対策がないものです。 

EKI04047, 2SK2382, 2SK2412.jpg MOS-FET

  左からEKI04047(サンケン), 2SK2382(東芝), 2SK2412(NEC) 

いずれも秋月電子で売られているものです。今回,使用したのは右のNEC 2SK2412です。

VDS(V) ID(A) PD(W) VGS-th(V) RDSon(mΩ) Ciss(pF)

EKI04047 40 80 90 2.0  4.1 2410

2SK2382 200 15 45 1.5~3.5 130 2000

2SK2412 60 20 30 1.6 50 860

2SK2412はゲートしきい値電圧 VGS_th が小さく,2Vくらいで on します。MOS-FETは VGS_th が大きいのが多く,4Vくらいになるものありますし,外国製だともっと高いです。TL494はVccに9Vをかけますので出力電圧が高くていいですが,TTLやPICを使うと5~3Vほどなので,下手すると on しないMOS-FETもあるので,VGS_th の小さなMOS-FETを使う必要があります。また,2SK2412は入力容量 Ciss が小さく,860pFほどなのもいいです。

最近は小さくても100A程度の大電流が流せるMOS-FETが発売されていますが,Ciss が2000pFを超えるものが多いので困ったものです。 iruchanはオーディオマニアなんですけど,入力容量はローパスフィルタとして作用しますから,これは小さい方がいいに決まっています。真空管やバイポーラTrはごく小さな値ですからね。だから,2000pFなんてiruchanにとっちゃ,天文学的数字なんですけど......。

いくらMOS-FETはスイッチング速度が速いといってもこんなに入力容量が大きいと溜まった電荷を抜くスピードを速くしないとスイッチングが遅くなっちゃいますので,ドライブ回路の工夫が必要になります。2SK2412 は20年ほど前の開発なので,Ciss は小さいのですが,その代わり,あまり大電流は流せません。

ドライブ電圧はKC-1はμPC494Cのコレクタ出力C1,C2から取っていて,出力のTrもPNP Trを使っていますが,E1,E2から取ることにしました。 こうすれば,出力段はMOS-FETのドレイン出力にできます。2SD560などのNPNのダーリントンTrを使うことも可能です。むしろ,バイポーラTrの方が入力容量ははるかに小さいので,先ほどの問題は生じません。

また,KC-1は高周波,低周波でそれぞれ別々の出力回路を持っていますが,PWM信号をOR回路で和を取れば1個の出力回路で済みますので,そうしました。といって,わざわざ74LS32などのOR回路を使うのはスペース的にもったいないので,単にDiと抵抗のネットワークにしました。 

保護回路はR-SフリップフロップCD4043を使いました。TTLだと7402NORゲートを使ったICで配線しないと作れませんが,C-MOSには最初からR-Sフリップフロップがあるので便利です。それに,#4000シリーズのC-MOSは電源電圧が3~15Vと広いので,TTLのように5Vの3端子レギュレータが不要です。今回,直接,12Vで動作させています。#4000シリーズの開発は真空管の雄RCAですが,非常に便利なICを作ってくれたものだと感心します。

なお,TTLのR-Sフリップフロップというのは7400NANDゲートでも作れますが,この場合は負論理となり,論理が反転しちゃいますので,今回の回路には使えません。 

KATO KC-1 iruchan mod. simulation circuit.jpg 

     KATO KC-1iruchan改シミュレーション回路

低周波パルスのデューティを最大100%にするのはかなり苦労しましたが,DTCとFBを接続すると可能であることがわかりました。

KATO KC-1 iruchan mod. 波形.jpg t=0 sec.からの波形です。 

高周波パルスの立ち上がりは遅く,ゆっくりと立ち上がります。といって,ほんの数msec. の間のことなので,人間の目にはわかりませんけどね。 

KC-1同様,高周波パルスとのミックスになっています。また,高周波と低周波パルスの波高値をできるだけそろえました。

KATO KC-1 mod. test.jpg 完成した基板。

基板も作りました。ちょっと長くなっちゃいましたので,工作についてはまた次回です。どうも申し訳ありません。 

テスト出力波形.jpg 出力波形です。

ちゃんと高周波と低周波の2波PWMとなっています。使用しているアダプタが9V出力のものなので,パルスのピーク値も9Vくらいになっています。


デジタルアンプLepy(旧Lepai) LP-2020A+の改造~ヘッドホン端子の取り付け~ [オーディオ]

2017年1月31日の日記 

中国Lepai社のデジタルアンプLP-2020A+にヘッドホン端子をつけました。  
 
LP-2020A+ヘッドホン改造.jpg 
 
 ヘッドホンで聴けるようになりました。下は自作のアナログ式専用電源です。
 
デジタルアンプは出力段がBTL方式になっていることもあり,ヘッドホン端子を取り付けるのは難しいのですが,なんとか使用できるようになりましたので,手持ちのLP-2024A+を先に改造しました。先週末は残ったLP-2020A+を改造しました。 
 
改造の中身については,前回のLP-2024A+の改造と同じですので,そちらをご覧ください。
 
LP-2020A+フロントパネル加工.jpg パネルの穴開けのけがき
 
正面のパネルに穴を開けるので慎重にやらないといけませんが,まあ,所詮はアルミだし,きちんとポンチを使って位置決めをし,最初はΦ2~3mmくらいの下穴を開けてΦ6mmの穴を開ければ傷もつかず,きれいに穴開けできると思います。 
 
電源SWの横にヘッドホン用の穴を開けます。ボリウムの左側の穴はスピーカoffのプッシュスイッチ用です。ヘッドホン使用時はそのスイッチを押してスピーカをoffにします。残念ながら,回路はもとからついているミューティングリレーの制御回路を利用してスピーカをoffにしていますが,ヘッドホンを挿したら自動的にスピーカをoffにする,ということはできませんでした。 
 
LP-2020A+ヘッドホン基板.jpg ヘッドホン基板
 
 
ヘッドホン基板は前回作ったLP-2024A+のものですが,LP-2020A+ではやはり放熱器が邪魔をして多少,改造しました。
 
LP-2020A+に使用されているTripathのTA2020は出力がBTL方式ですが,それぞれ,ホットとコールド端子はGNDに対して6Vくらいの直流電圧が出ていて,スピーカから見たら等電位なので問題ないのですが,ヘッドホンは対GNDで動作させるため,これをカットする必要があり,ストッピングコンデンサが必須です。今回,小型のOSコンにしました。 
 
やはり小型なので十分,スペースに収まりました。コンデンサは100μFにしました。
 
なお,OSコンは導電性高分子アルミ固体コンデンサ,と言うのが正式名称ですが,従来の電解コンデンサと異なり,電解液を使っていません。キャリアが重いイオンじゃなく,軽い電子ですので,非常に高周波特性がよく,ESRも低いし,長寿命という特長もあるのですが,陽極と陰極がポリマーを介して接しているため,故障時にショートモードで故障する場合があります。そのため,メーカはカップリングコンデンサとしては非推奨なので本来,こういう使い方はNGなんですけど,問題はないと思います。
 
一方,高周波特性がよいことから電源のデカップリングコンデンサへの使用は推奨されているのですが,iruchanはこっちこそ危ない,と思います。もし故障したら電源をショートすることになりますからね。OSコンじゃないですけど,同じ故障モードになるタンタルコンデンサをデカップリングに使った'80年代の某社製高級プリアンプはトランスが焼ける,と言う故障が出ています。
 
でも,OSコンはやはり音がよいです。今回もヘッドホンで聴いてみて,明らかに従来の電解コンデンサとは異なる音でした。
 
おかげで非常に評判のよいLepai社のデジタルアンプですが,ヘッドホンでも聴けるようになりました。
 

コアレスモータ対応PWM式鉄道模型用コントローラの開発~その1~ [模型]

2017年1月21日の日記

3年前の年末,KATOからD51がリニューアル発売され,iruchanもギースルエジェクター装備機を購入しました。

門デフ同様,ギースルエジェクターはとてもかっこよいし,何より北海道用の機関車なのでキャブは乗務員扉がついているし,スノープラウもいかめしくてなかなかいいスタイルをしていて,お気に入りの機関車になりました。

また,動力の性能も素晴らしく,低速からスムーズに起動するのは感動的です。

ただ,少し困った問題に気づきました。

iruchanはPWM式のコントローラを昔から自作していますが,PWM式のコントローラを使って低いデューティでパルスを出力すると,モータが回転しない状態で前照灯が点灯する,いわゆる常点灯を実現することができます。

このとき,うまくやらないと反対側の前照灯や尾灯まで点灯してしまうので,iruchanはスナバ回路を考案していつも改造しています。この回路を使うと,無事に所定の向きの前照灯のみ点灯させることができます。

ところが,このKATOのギースル機は前照灯が点灯すると同時に機関車が起動してしまい,停車中に前照灯を点灯させることができませんでした。詳しい改造状況は前回のブログをご参照ください。

原因は使用されているコアレスモータのせいだと思います。

コアレスモータは従来,星形の鉄芯を用いて,その出っ張った凸極にコイルを巻いていたのをやめて,コイルをハニカム巻きにしてコイル自体を回転子としたもので,鉄芯(コア)がないのでコアレスモータと呼ばれます。

回転子がコイルと軸だけなので非常に軽くて機械的な時定数が小さい上,普通のモータはフェライト磁石を使っていますが,コアレスモータは磁力の強い希土類磁石を使うため高磁束密度となり,きわめてハイトルクです。また,凸極の部分は磁石に吸いつくし,谷間(スロット)の部分はトルクを生じないのでどうしてもコアつきモータはカクカクと動きます。軸を手で回してもそういう抵抗を感じますよね。コアレスモータはトルクムラが非常に小さく,ブラシ付DCモータとしては最高の性能を持つモータです。

それにコアつきモータの場合は界磁は回転子の外側に配置するのに,コアレスモータは回転子の内側に配置するのでサイズも小さく,鉄道模型にはぴったりだと思います。もっとも,外側界磁のコアレスモータというのも存在しますが,それじゃ回転子の内側ががらんどうになっちゃってスペースがムダなので,省スペース化を図るため内側界磁にしているので小型になる,という理由もありますけど.....。

まあ,こうやって書くといいことばかりなんですけど,何より最大の問題はコスト。巻線構造が複雑なのと,希土類磁石が高いので,今までは鉄道模型に使用することは考えられませんでした。

ところが,近年はスマホの普及などで小型のコアレスモータが大量生産されるようになり,コスト低減も進んで,徐々に鉄道模型にも使用されるようになってきています。特に蒸機ではいままで,日本の蒸機のボイラが細すぎることも相まってキャブ部分にモータを収納せざるを得ず,さらにはキャブをはみ出して炭水車ギリギリにおしりが来る,なんてのが普通で,いったい,乗務員はどこに乗るんだ? と言いたくなるような状態でしたけど,KATOの新D51では見事にボイラ内にモータが収まっており,キャブ内に焚火口や圧力計などのディティールまで施してあります。

と言う次第で,いいことばかりなんですけど,iruchanを含めて模型屋にはちょっと困った事象が出ています。

それが,常点灯に対応しない,と言う問題です。モータがハイトルクになったのはいいのですが,少しでもコントローラからパルスが出力されるとモータが回転してしまうようです。また,このせいで少々,ラピッドスタート気味で,超低速状態で走行させると言うことが難しくなっているようにも思われます。

でも,前回,常点灯については少し,解決策がありました。

実は,iruchanは201系電車のファンなので,201系用のPWM式コントローラを300Hz/20kHzでスイッチング周波数切替式で作ってあり,201系を運転するときは300Hzで運転して,実車同様のチョッパ音を楽しんでいます....(^^;)。

結構,これ,笑っちゃうんですよね。本物そっくりにプーッという音を出して201系が走ります....!!

で,前回のKATO D51ギースル機ではスイッチング周波数を300Hzにしたら,前照灯が点灯している状態で停止することができたので,それでよいと思いました。

ただ,猛烈にモータが唸ります。まあ,機関車のスピードが上がってくるとうなり音が止まりますけどね....。それに蒸機なのにチョッパ電車みたいな音を出して走る,と言うのも何だかな~という感じです。なんとか,常点灯にも対応して静かに発車できるようにしたいと思いました。

でも,これ,難しいんですね。しばらく研究してみたいと思いました。いずれ,電車にもコアレスモータが使われるようになると思いますしね。今のうちにコアレスモータ対応のコントローラを開発しておきたいと思います。

まずは,PWM式コントローラのスイッチング周波数について検討してみます。

一般に,スイッチング時の電磁音を聞こえないようにするため,DCモータの制御用のPWM制御コントローラではスイッチング周波数を人間の可聴帯域外にすることが普通です。実際,KATOやTomixのPWM式コントローラは20kHzくらいの周波数でスイッチングしています。

iruchanは最初,10kHzで作っていました。多少,ピーッという音がするんですけど,気にならないくらいですし,むしろ,レイアウトの途中で機関車が停車した場合,導通不良でそこに電気が来ているか,来ていないかを判断することもできたので,10kHzでもよいと思っていました。機関車が停車してもピーッという音がしていれば,原因は軌道ではなく,機関車だとわかりますからね。

でもやはりピーッという音がするのも何だなぁ,と言うことで最近は20kHzで設計しています。ついでに300Hz切替もできるようにしていますけどね。

一方,純粋に電気的な性能で考えるとスイッチング周波数は高い方がよく,損失も低下しますし,実際,PWM制御の教科書にもそのように書いてあります。

えぇ~~っ,そうなの? という感じでした。むしろ,iruchanは低周波のスイッチングの方が今まで,損失は少ないと思っていました。高周波だとスイッチング回路の応答特性が悪くなってきて,損失が増えてくるはずです。スイッチング周波数を20kHzなんかにするのは,音のせいだけじゃない,と思っていました。

と思ったのですが,一度,Spiceでシミュレーションして調べてみました。モータは20Ωの抵抗と1mHのインダクタンスで模擬しています。

PWM simulation circuit.jpg シミュレーション回路

今まで,ずっとiruchanが作ってきたPWM式コントローラの基本回路です。タイマIC555で三角波を作り,コンパレータで基準電圧と比較してPWM波を作っています。

20kHz(duty=11%、1mH).jpg 20kHzのとき

300Hz(duty=11%).jpg 300Hzのとき

同じ低いデューティで比較してみます。

モータの電流にご注目ください。fs=20kHzのときはモータ電流は三角波みたいになっていますが,連続しています。一方,300Hzだとパルスの幅だけ電流が流れていていて,制御Trがoffのときは電流が流れていません。

これですね,モータが唸る原因は。制御Trがonしているときだけモータの電流が流れ,offの時はモータの電流は0となっています。つまり,回転と停止をきわめて短時間に繰り返している状態で,それでモータが振動して音が出ます。よく,PWM制御というのはON-OFF制御をきわめて高速でやっている,と説明することが多いですけど(iruchanもそんな説明をしていました。どうもすみません),実は間違いで,高周波でスイッチングするとモータを流れる電流は連続していて切れ目がありません。もっとも,低周波でスイッチングしてもデューティが高くなってくると電流は切れなくなります。300Hzで模型を運転していて高速になるとモータが静かになる,というのはこのためです。

PWM循環電流.jpg モータの循環電流

  → の実線の時が制御TrなりFETがonの時で,点線の時はoffの時です。

スイッチング周波数が20kHzのときはモータのインダクタンス分で逆起電力が発生し,フリーホイールDi(FWD)を介して電流が逆流してモータの電流は切れていません。

このダイオードは結構重要で,今まで,直流用のスナバ回路の一種だと思っていましたし,実際,そうなんですけど,モータを負荷にした場合はモータの電流を切らない,という重要な役割もあるのですね。ただ,iruchanはTomixの5001パワーユニットをPWM化していますが,これに使ったHブリッジドライバは機能上,FWDをつけることができません。モータを流れる電流が逆転するので,ダイオードは両方向につけないといけないのですが,そうするとモータを短絡することになっちゃうからです。Hブリッジはマイコンでモータの正逆転を制御できるので広く使われますが,これもどちらかと言えば高めのデューティ固定で使われ,この電流が切れない領域で使用されることが多いと思います。

この電流を循環電流と言います。なんか,昔は還流電流と言った気もしますけどね....。

PWM制御の教科書を読むと,この循環電流が切れない領域でモータを制御するのがよい状態で,このとき,モータは静かに回転します。一方,この循環電流が切れてしまうとモータは発停を繰り返すため,振動してしまいます。こういう領域でモータを使用しない,というのがPWM制御方式の条件のようです。

スイッチング周波数が低いとこの循環電流が切れてしまう領域が広いので,スイッチング周波数は高い方がよいのです。

とはいえ,鉄道模型はデューティが0%から起動しますし,ごく低いデューティで低速運転することも多く,循環電流が切れる領域を使うのは当たり前だと思います。工作機械や自動車用のモータなんかだったらある程度,一定の速度で使用するから循環電流が切れない領域で使えるんでしょうけど,鉄道模型はそういうわけにはいきません。

次に,モータ電流の値を見てみると,スイッチング周波数が300Hzのときはモータを流れる平均電流は20kHzの時の倍くらいですし,ピーク電流に至っては10倍くらい大きな値となっています。トルクはモータ電流に比例しますので,つまり,同じデューティではスイッチング周波数が低いほどモータのトルクが大きい,と言うことがわかります。

また,損失についても,Spiceは回路の損失を計算してくれますので,こちらもシミュレーションしてみました。

損失(duty30%).jpgモータと制御Trの損失

出力のパルスのデューティは33%くらいでシミュレーションした結果です。555ICはR1とR2で周波数を可変できますが,同時にデューティも変わっちゃうので,デューティのグラフは少し変化します。

やはり高周波ほどモータの損失は小さくなり,低周波のPWMはよくないことがわかります。100HzくらいでPWM制御すると最大損失は2W近くまで上がっちゃいます。このまま走行させるとモータが発熱してきます。

もっとも,今回のシミュレーションはモータの逆起電力を考慮していない結果なので,実際の走行状態ではもっと損失は小さくなるのでそんなに大きな問題ではないと思います。ただ,うっかり脱線したりして機関車が停車した状態で放置するとこの熱が発生しますので,脱線したらすぐにボリウムは絞る必要があります。

それにしても,スイッチング周波数が20kHzというのは根拠がある数値,と言うことがわかりますね。

でも,なぜか,一度,損失が20kHzくらいを底にして上がってきたり,また急激に下がっちゃう理由がわかりませんけど。

ただ,iruchanの設計した回路では50kHzくらいが限度で,ここまでスイッチング周波数を上げちゃうとパルスの波形が崩れてしまいました。

コアレスモータのメーカのホームページなどを見ると100~200kHzくらいでスイッチングするのがよい,なんて書いてあるところもありますけど,そんな高い周波数で方形波を扱うのは困難です。iruchanの回路だと全く無理で,三角波の発振は555だと日本無線のNJM555の規格表を見ても発振周波数が100kHzまでのグラフしか出ていなくて,無理そうです。コンパレータももっと高速のコンパレータを使わないといけません。制御TrもfTの高いものが必要ですし,MOS-FETを使うと高速スイッチングができますけど,入力容量が大きいため,ドライバ回路の工夫が必要です。

iruchanはオーディオマニアなのでわかりますけど,方形波は10倍以上の周波数領域が必要なので,仮に100kHzでスイッチングすると考えると1MHzくらいまで応答性能が必要です。これはちょっと難しい話です。

と言う次第で,100kHzを超えるPWMコントローラは自作は難しそうです。一度,やってみたい気はしますけどね。

それで,コアレスモータの場合はどうなるか,考えてみます。

コアレスモータはインダクタンスが小さいことが特徴です。インダクタンス分を仮に1/5としてみるとこんな感じです。

20kHz(duty=11%、0.2mH).jpg インダクタンスが小さいとき

やはりスイッチング周波数20kHzの時でも,モータのインダクタンスが小さくなると循環電流が切れる領域となってしまいます。

一方,電流値の方は平均電流は1.2倍,ピーク電流は4倍になっていて,インダクタンスが小さい方がトルクは大きい,と言うことがわかります。コアレスモータがハイトルクなのはインダクタンスが小さいことにも起因しているようです。

そんな解析結果ですが,どうも300Hzの方がハイトルクだし,モータが唸ることをのぞけばコアレスモータの制御に適している感じがします。

また,LEDが点灯しているのに,機関車が起動しないのは回転子が微妙に動いてもスイッチング周波数が低いと電流の休止期間が長いため,すぐに停止してしまうため,と考えられます。

こう考えてくると,コアレスモータ式鉄道模型のPWM制御は低周波のスイッチングの方がよさそうです。あとはどうやってモータが唸るのを抑えるか,なんですけどね......。

ということで,ひとつの対策としてはPWMの代わりにPFMを使う,と言うのが考えられます。

PFMとはPWMがパルス幅変調(pulse width modulation)なのに対し,パルス周波数変調(pulse frequency modulation)の略で,要はパルスの幅は一定値で固定して,offの期間を可変して制御するものです。見方を変えると周波数を変化させるのでPFM,と言うわけです。

具体的にはたとえば,パルスの幅を300Hzと同じ,3.33msec. 固定とし,休止期間を∞~0 sec.としてやればPFMができます。実際には休止期間が無限大だとボリウムが作れませんし,ある程度,休止期間を小さくしてやらないとボリウムを右にいっぱい回した状態でモータが回る,と言うことになっちゃうので,実験で最大休止期間を決めないといけません。まあ,1sec.くらいのものか,と思いますけど。

応用例としては,スイッチング電源の制御方法で,低いデューティの時はPFMの方が有利で,スイッチング電源のコントローラICには最初,起動時はPFMでスタートし,後でPWMに移行する,というICが増えてきています。

PWM原理.jpg PWMの原理。パルス周期が固定です。

PFM原理.jpg PFMの原理。パルス幅が固定です。

いずれ,iruchanもPFM式のコントローラを作ってみたいと思っていますが,これがひとつの解決策かもしれません。もっとも,やってみないことにはうまくいくかどうかわからないので,なんとも言えないんですけど。

もう一つはPWMで,低周波と高周波の2つのPWMコントローラを組み合わせる,と言うやり方だと思います。低周波をモータ制御に使い,高周波を前照灯&室内灯の制御に使うわけです。低周波パルスの間隙に高周波のパルスが出ているので,循環電流が切れる領域を小さくすることができるはずです。

これって......,もしかしてKATOのKC-1と同じじゃない?

と思われた方も多いと思います。そうです,実際,KATOのKC-1はこういうパワーパックでした。それに,今でも超低速はKC-1がよいと思っている方が多いようで,某掲示板にもそう書き込みがあります。また,コアレスモータとの相性もよい,という情報も耳にします。

と言う次第で,iruchanはKATOのKC-1を研究することとしました。続きはまたその2で。


LUXKIT A3600復活への道~その4・調整編~ [オーディオ]

2017年1月14日の日記

Luxkit A3600.jpg 完成しました。 

とうとう,この2年ほど取り組んでいた,ラックスキットのA3600アンプが本日,試運転の日を迎えました!!!

LUXKITのA3600というアンプはNECと共同開発した,大出力3極出力管8045Gをプッシュプルで使った,50W×2のアンプです。発売は1975年のようなので,もう発売から40年経っています。

と言う次第で,いつも大変お世話になっている河童さんからいただいた後,いろいろとメンテナンスと設計変更をしておりました。

まずはコンデンサやソケット,錆びた端子などの老朽化した部品の交換に始まり,トランスやボンネットの塗装や回路の設計変更をして時間がかかってしまいました。

プリント基板.jpg プリント基板改良後

基板ソケットはQQQのものを使いたかったのですが,基板用が手に入らなかったので,中国製の金メッキ品を使っています。

案の定,ソケットが渋くて真空管がスムーズに差さりませんでした。こういうときは無理をすると真空管を割っちゃうので,一度小さなマイナスドライバー(#0)を突っ込んでコンタクト部分を拡げておきます。 

カップリングコンデンサはすべて新品のフィルムコンに変更します。なお,真空管アンプのカップリングコンには必ずフィルムコンを使うようにしてください。オイルコンやペーパーコンは経年劣化でリークしますので不可です。オイルコンは歴史があるし,音がよいから,ということで愛用している方も多いと思うんですが,安全面を考えると要注意です。リークすると出力管の寿命に直結しますので,フィルムコンにしてください。iruchanは独EROを愛用しています。すでに製造中止ですけどね....。A3600はオリジナルは日通工のフィルムコンでした。これなら安心ですけど,やはり年月が経っていますし,リード線が錆びているので交換しました。

そのほか,位相補正用のセラミックはディップマイカに交換しました。出力管の動作点が変更となり,バイアスが少し浅くなったので-C電源も少し定数をいじっています。 

なお,残念ながら,50C-A10PPのKMQ60はオイルコンが使われています。お使いの方はすぐに交換した方がよいと思います。 

このアンプははわざわざ8045Gなんて大出力の真空管を開発したところからもわかるように,大出力指向のアンプで,この前も書きましたように,公称50Wのアンプですけど,実は実測で66Wも取れちゃいます。

そんな大出力はいらん,という気がしますし,何より8045Gは寿命が短いことで知られているので,もっとB電圧を下げて楽をさせてやりたいと思っていました。

今回,トランスの2次側出力にAC用コンデンサを挿入してB電圧を60Vほど下げることにしました。 また,これに伴い,ドライバ段の定数変更が必要となりますので,Spiceでシミュレーションして定数を決定しています。

それに,8045Gドライブ専用として6240Gという真空管も採用されていますが,これも入手困難なため,6FQ7で代用します。 特性が異なりますので,こちらも前回,あわせて検討しました。

回路の変更箇所を示します。赤字が今回の変更箇所です。6240Gがない,と言う方も6FQ7で代用可能ですので,ご参考にしてください。 オリジナルの回路はこちらをご覧ください。また,本機はA3300プリアンプの電源供給用にGTソケットがついていますが,電源のフィルタコンデンサの周辺がすごく混み合っているので廃止しました。もう,A3300プリアンプを入手して使うこともないでしょうしね。 

LUXKIT A3600回路図改造後.jpg 改造後の回路 

なお,電源部は少し,元の状態が変わっていて,オリジナルだと2連の電解コンデンサを使っているのですが,どういうわけか3連のものが使われていました。もとの所有者の方が改造したのか,それともA3600のバージョンのひとつなのかわかりませんけど。もはやブロック電解コンデンサは国産のものはなくなっていますし,テストしてOKだったのでもとのものを使っています。オリジナルの回路はこちらをご参照ください。 

今日はいよいよ通電して調整していきます。

まずは電源部のテスト。一番危険な箇所ですし,回路を間違っていると大変なことになりますので,まずはここからテストします。案の定,フィルタコンデンサのはんだが一部,テンプラになっていてうまく高圧が出ませんでした。ついでに電解コンデンサのテストをしておきます。古いケミコンはリークしたり,容量抜けしたりしてハムが出たりしますので,少し低めの電圧をかけてテストします。

まずはスライダックで1次側にAC10~20Vの電圧をかけ,各電解コンデンサにちゃんと電圧がかかっているか調べます。うっかり,極性を逆に配線していてもこれくらいの電圧なら助かりますので。特に,今回,A3600は固定バイアスのアンプなので,バイアス用のケミコンにちゃんとマイナスの電圧が出ることを確認します。

ダイオードが発熱したりしないかも調べておきます。問題なければAC50Vくらいにしてしばらく放置します。このとき,B電圧は250Vくらいになるはずです。

これで電解コンデンサの絶縁皮膜が回復するのを待ちます。フォーミングというのですが,米国製の電解コンを使った場合などは必ずこの状態で数時間放置してください。日本製のケミコンはいきなり高圧をかけても何の問題もないですけど,MalloryやSpragueなどの米国製の場合,いきなり高圧をかけるとヒューズが飛ぶことがあります。

なお,まだ現在は全く無負荷の状態なので,絶対にAC100Vにしないでください。ドライバ用の電解コンデンサなどの耐圧をオーバしちゃいますので。

さて,次はドライバ用の6AQ86FQ7だけ挿して,また徐々に高圧を加えます。プレート電圧などに異常がなそうならAC90Vくらいまで電圧を上げます。

ここで,一応,出力段のバイアス電圧を調べておきます。

8045Gのカソード(#8ピン)に黒,グリッド(#5)ピンに赤のリードを当ててみて,ちゃんと-90Vくらいの電圧が出るのを確認します。また,各半固定ボリウムを回してみて,スムーズに変化することを確認します。すべての8045Gのバイアスが-90Vくらいになるようにセットしていよいよ出力管を挿します。

さて,いよいよ出力管のプレート電流を調整します。

スライダックで再度,徐々に電圧をかけていきます。カソード~GND間に10Ωが入っていますので,この両端の電圧を計測して750mVとなるようにします。

今回,8045Gの動作点は前回のブログにもあります通り,EP=430V,Eg=-85V,IP=75mAとしましたので,この抵抗の電圧は750mVです。

残念ながら,8045Gの1本が少しエミ減気味で,R ch.はIP=70mAであわさざるを得なかったので,B電流が少し小さく,B電圧は450Vになりました。ほぼSpiceのシミュレーションどおりです。

オリジナルのA3600はEP=495V,Eg=-100V,IP=80mAですので,もう少しプレート電流は流した方がよいのかもしれませんが,プレート損失を抑えて33Wにしました。オリジナルだと39Wですから,▲15%としました。 

プレート電圧も含め,プレート損失も出力管の寿命を考えると,もう少し小さい方がよいと思います。 

これで4本すべてのプレート電流をあわせます。各ch.の上下の出力管のアンバランスは1mAを目標に調整しました。

さて,ここまで来たらf特と出力を見ておきます。

LUXKIT A3600 f特.jpg 周波数特性(1W)です。

ちょっと驚いちゃいました。10Hz~50kHz(-1dB)と言ったところで,非常に広帯域です。特に,低域のレスポンスがよいのはプッシュプルアンプの特長ですけど,それにしても10Hzでも-0.7dBで,実際には-1dBも行っていないのですから。iruchanの持っている低周波発振器は10Hzまでなので,それ以下はわかりませんけど,カットオフは非常に低いはずです。高域も50kHzとは驚きで,手持ちのLUXKITのKMQ60より非常に広帯域です。

出力は53.6Wとなりました。まだ少し大きいですが,まあこんなのものでしょうか。 

10kHz方形波応答.jpg 10kHz方形波応答

  リンギングやオーバーシュートもなく,素直な方形波応答です。  

さあ,いよいよお楽しみ.......。音を聴いてみます。

まずはいつも聴いている,アナ雪。まだはまっちゃってます。

う~~ん,最近は "君の名は。" が大受けで,そろそろアナ雪も抜かされそう,と心配しちゃっているんですけど。それに,昔からiruchanは学園ものが嫌いなので,今年の正月は子供と "君の名は。" じゃなくて, "この世界の片隅に" を見に行きました。これ,本当にいい映画です。悲しい結末だけれど,戦時下にも前向きに生きようとしている主人公に共感を覚えましたし,とても勇気づけられました。それに,悲劇を描いているけれど,妙に明るくて,笑いながら最後まで楽しめます。さすがに,あまりに悲しいと,某戦争アニメみたいに,とても最後まで見ていられないということになっちゃいますので。 日本映画って,誰かもFMで話していましたけど,こういう見たらトラウマになりそうなのが多くて困ります。実は,iruchanはそのチョ~有名な戦争アニメは今まで,一度も最後まで見たことがありません......(^^;)。

アナ雪2.jpg 

松たか子さんの高音の伸びた澄んだ歌声に魅了されます。やっぱ,いい曲だな~~~!!

それにしてもずいぶん寒くなってきましたけど,このアンプはストーブ代わりになります。なにせ200Wもの熱を出しているのですから,小型ストーブ並みです。実際,調整中は寒いので8045Gに手をかざしながらやっていました。火鉢かよって!?。これやったらストーブいらへんやん,と言う次第で,やっぱ....

画像3.jpg

   ♪ 少しも寒くないわ~ (松たか子さんの声で!!) 

アンプはとてもノイズが少なく,ハムが全く聞こえません。こういう点はプッシュプルのアンプですね。シングルのアンプはどうしてもハムが残っちゃいますけど。音も左右の分離がよく,豊かな低音が魅力です。それほど高音は伸びている感じはしませんが,やはり真空管特有の暖かくて柔らかな音だと思います。半導体のアンプじゃ味わえませんね。 

さて,お次はお約束のフルヴェンの第九。本当は年末に完成させて,師走に聴きたかったですけどね.....。

ご存じ,言わずと知れた1951年7月29日のバイロイト音楽祭の初日の演奏録音です。やはりこれしかない!!という感じのチョ~名演です。

聴いたのは東芝EMIがSACDのハイブリッドで出した盤。紙ジャケだし,SACDになったし,と言うことで買ったものです。

ただ,ちょっと驚いたのはフルトヴェングラーが壇上に登場する音が入った,いわゆる "足音入り" の盤なんですけど,なぜか以前の盤に入っていた,第1楽章冒頭の耳障りな聴衆の咳払いや,マスターテープの劣化による第2楽章のドロップアウトがなくなっています。

後者は耳障りなのでなくなってよかったですけど,どうにも冒頭の咳払いがなくなっているのは変。何をやって消したのかわからないんですけど,これがないとフルヴェンじゃない,という感じです。演奏と一体化しちゃっているので,iruchanはちょっと変な感じがします。

やはり一番の聞きどころは第4楽章のバリトンのエーデルマンが歌い出す前後。 おぼろげに低音がこもったような響きのホールにオケの演奏が盛り上がって彼が歌い出すところは秀逸。

     ♪ おお、友よ! このような調べではない!........

と言う次第で,今年はフルヴェンの第九からはじまりました。また本年もどうぞよろしくお願いします。

Furtwangler Beethoven sym.9.jpg 

        Beethoven Symphony No.9 (TOCE-11005) 


LED調光器のパワーアップ [電子工作]

2017年1月2日の日記

皆様,どうも明けましておめでとうございます。本年もどうぞよろしくお願いします。

さて,今日は正月休みなので少し工作をします。

実は,以前,LED照明を購入して自作の調光器でワークベンチで使っています。とてもサイズがコンパクトで,磁石でくっつくし,明るいし,何より電球色というのも気に入って愛用しています。

使っているのはAmazonで購入したイルミカ東京さんが発売している,TK-12-600WWという照明で,全長600mmのものです。本来はショーウィンドウなど,店舗内の照明に使われるものですが,非常にスリムでコンパクトなのでワークベンチで使っています。 

ただ,もちろん,パソコン作業や読書には十分すぎる明るさなんですが,すでに老眼が進んでいるiruchanがアンプを作ったりすると少し手元が暗く,もう少し明るくしたい,と思っていました。

これは連結して使えるようになっていて,どんどんつないで長~く使えるようになっているので,もう1つ接続したら明るくなるはずです。

ところが,困ったことに前回製作した調光器が意外に発熱して,このまま2つ連結すると結構厳しそう,という感じです。

これは,前回の回路にあるとおり,原因はスイッチング用の制御素子にバイポーラTrを使っているためです。

残念ながら,このような電力制御に今,バイポーラTrを使うことはほとんどないと思います。鉄道模型のコントローラもMOS-FETを使うのが普通でしょう。

理由は簡単。断然MOS-FETの方が性能がよいし,値段も安いからです。

MOS-FETの方がスイッチング速度は10~100倍くらい速いし,また,損失の点でもバイポーラTrの1/10~1/100くらいと非常に小さいので,バイポーラを使う理由なんてありません。おまけにMOS-FETは電圧制御なので,Trよりドライブ回路が簡単です。そのほか,温度補償の点や2次破壊がないなど,メリットは多いです。昔だと,MOS-FETが高かったのでバイポーラを使う理由になりましたけど,今じゃ,MOS-FETの方が安いくらいで,あえてMOS-FETを使わない理由なんてないと思います。

iruchanはそれこそ中学の頃からはんだごて握っていますけど,その頃はまだMOS-FETが出たばかりで,非常に高くてとても中学生の小遣いじゃ買えなかったし,その上,静電気で壊れやすいとか,発振しやすいとか,いろいろあって素人には使いにくく,その辺が今でも気になって敬遠しちゃいます。

アンプに使っても,どうしてもMOS-FETは眠い音がするし,今でもあまり好きじゃありません。それに,何よりiruchanは何でも古いものが好きなので......。 やっぱ,電車といえば475系,機関車はEF81だし,アンプはもちろん,真空管。それも452A3のようなのが好きなので。半導体だとTO-3型の2SA627D188とか,V-FETの2SJ18K60がお気に入りですね!!!!

と言う次第で,いつも半導体や鉄道模型のコントローラを作るときはバイポーラTrを愛用しています。

ただ,今回は発熱を減らすのが目的なので,もはやバイポーラTrの出番じゃありません。

バイポーラTrはエミッタ~コレクタ間飽和電圧VCEsatが0.2~1.5V程度あります。アンプの設計だと1Vで計算したりします。このVCEsat×コレクタ電流が損失になるわけですし,今回のように1Aくらい流れる回路だと1W以上,熱が発生します。厄介なことに,VCEsatはコレクタ電流が増えるほど大きくなるので,損失がどんどん増えちゃいます。

また,PWM式コントローラを使うと,方形波のパルスを出力して理想的には損失は0なのですが,スイッチング速度が遅い,と言うことは,その立ち上がり,立ち下がりに時間がかかるので,その間,損失が出ます。

この点,MOS-FETだとスイッチング速度がきわめて高速なのでスイッチング損失は小さいし,また,飽和状態だとオン抵抗×ドレイン電流2 が損失になりますけど,オン抵抗は普通,mΩ単位なので非常に小さいです。

ちょっとシミュレーションして確かめてみませう。負荷電流は0.5Aとなるようにしました。スイッチング周波数は約20kHz,デューティ50%でシミュレーションしてみます。

PWM調光器(バイポーラTr).jpg 

       バイポーラTrのシミュレーション回路

PWM調光器(2sk442).jpg 

      MOS-FETのシミュレーション回路

結果はこうなりました。

PWM調光器(バイポーラTr)損失.jpg バイポーラTr

PWM調光器(2SK442)損失.jpg MOS-FET

やはり損失はMOS-FETはバイポーラTrの約1/16です。ヒゲのように立ち上がりと立ち下がりで損失が出るのはどちらもスイッチング速度のせいです。Spiceは平均損失も簡単に表示してくれますが,バイポーラTrだと484mWになっていますけど,これはデューティがほぼ50%だからで,もし,100%だと平均損失で約1Wと言うことになっちゃいます。なんでこうか,というと,やはりVCEsatのせいで,素子がONのときにもバイポーラだとこうやって損失が発生しちゃいます。一方,MOS-FETだとこの間の損失がほぼ0です。2SK442だと少し,出てますけどね。もっと最新のMOS-FETだと無視できるくらい小さくなります。 やはり問題はPWMのON状態のときです。

と言う次第で,今回,出力の素子をMOS-FETに変更しました。

なお,素子は手元にたくさんある,東芝の2SK442を考えたのですが,やはり最新の同じ東芝製TK34E10N1を使いました。なんか,もう2SK○○○というJIS型番じゃないのに驚いちゃいますけどね。 とうとうディスクリート半導体なんて儲からなくなって,EIAJに登録するのも面倒くさくなっちゃったんでしょうか。おまけに,最近のTO-220パッケージはフルモールドといってコレクタやドレインが金属で露出してないものが多いんですけど,これは昔ながらのやつ。これだと絶縁のマイカやデンカシートが必要ですが,これがあると取付がめんどくさいため,自動車屋さんからクレームがついて最近はフルモールドばかりになったんじゃなかったでしょうか......。

VDS(V) ID(A)  PD(W) VDSon(V) オン抵抗(mΩ) 

2SK442  70 10  30 1.4    記載なし

TK34E10N1  100 75 103 0.2    7.9

TK34E10N1 & 2SK442.jpg TK34E10N1(左)と2SK442(右)

2SK442は1980年代の製造だと思いますけど,それに比べると,なんか,あまりに技術が進歩しているのに驚いちゃいますね。同じTO-220なのに,TK34E10N1はドレイン損失が100Wを超えています。昔だったらTO-3型のパッケージになるんですけどね。

おまけにドレイン~ソース間飽和電圧が非常に小さく,わずか0.2Vです。ここに2SK442を使うとバイポーラ並みかそれ以上の損失を発生しちゃいます。

と言う次第で,やはり最新のTK34E10N1を使います。値段もせいぜい100円程度で,非常に安いです。 

PWM式LED調光器回路3.jpg 今回の回路

出力のTK34E10N1のソースに入っている0.47Ωは保護抵抗です。これを入れない人が多いですが,これを入れておくと過電流の時にTK34E10N1がカットオフするようになっていますので,入れておく方がよいと思います。 

12Vの出力なので逆転SWをつければもちろん,鉄道模型のPWM式コントローラとしても使えます.......(^^;)。

さて,実際に組み上がったら点灯してみます。

ダブル照明.jpg 

やっぱ,非常に明るい~~!!

それと,驚いたのは発熱。ほとんど発熱しません。一応,TO-220用の小型放熱器をつけてあるんですけど,ダブルで照明を点灯させてもほとんど熱くなりません。よく使われるTO-220型用の放熱器の熱抵抗は大体,20℃/Wなので,使えるのは2Wくらいまででしょう。前回の回路だと,照明1本でも結構熱くなりました。 これだと安心です。

と言う次第で,ワークベンチも明るくなったので,また真空管アンプでも組み立てることにしませう。 

調光器.jpg 調光器

調光器もネオジム磁石で棚にくっつくようにしてあります。 


謹賀新年

2017年1月1日の日記

どうも皆様,明けましておめでとうございます。今年でブログ開設10年目を迎えます。おかげさまで皆様のご支援をいただき,ここまで工作の成果を発表することができました。また本年もどうぞよろしくお願いいたします。

謹賀新年'17.jpg iruchan

 


前の10件 | -